CHEN Jin-Yu,
YANG Xiao-Song,
CHEN Jian-Ye
.2017.Experimental studies on the relationship between carbonaceous structure and electrical conductivity of the Longmenshan fault zone.Chinese Journal Of Geophysics,60(9): 3475-3492,doi: 10.6038/cjg20170917
含碳结构对龙门山断层带电导率影响的实验探索
陈进宇, 杨晓松, 陈建业
中国地震局地质研究所, 地震动力学国家重点实验室, 北京 100029
Experimental studies on the relationship between carbonaceous structure and electrical conductivity of the Longmenshan fault zone
CHEN Jin-Yu, YANG Xiao-Song, CHEN Jian-Ye
State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China
Abstract:Carbon is a crucial factor influencing rock electrical conductivity and its enrichment in the fault rocks might be one of the key mechanisms responsible for the anomalously-high electrical conductivity observed in the Longmenshan fault zone. To investigate the effects of the content, grain size and crystal structure of the carbon present in natural fault zones, in this study, electrical conductivity measurements have been performed on simulated fault gouges that were prepared from both synthetic (mixture of carbon and quartz) and natural fault rocks at room temperature and 0.2~300 MPa lithostatic pressure condition. The synthetic samples show a sharp increase in electrical conductivity when the volumetric fraction of carbon (φc) reaches a critical value. This observation is consistent with the prediction from the percolation theory. Our results also show that the grain size of less conductive component (quartz) can affect the electrical conductivity, but in the manners that are different between connected and unconnected samples. Microstructural analysis further revealed the presence of carbon films at the grain boundaries in natural samples. Furthermore, the natural samples have lower electrical conductivities (<9×10-4 S·m-1) than the synthetic samples that have similar φc-values. The measured values are also lower than those determined from the magnetotelluric survey in the study area (0.03~0.1 S·m-1). This discrepancy suggests the necessity to measure the natural samples under in-situ, dynamic conditions.
Bai D H, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nature Geoscience, 3(5):358-362. Bass J D. 1995. Elasticity of minerals, glasses, and melts.//Ahrens T J ed. Mineral Physics & Crystallography:A Handbook of Physical Constants. Washington, DC:AUG, 2:45-63. Burchfiel B C, Royden L H, Van Der Hilst R D, et al. 2008. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People's Republic of China. GSA Today, 18(7):4-11. Chen J Y, Yang X S, Ma S L, et al. 2013. Mass removal and clay mineral dehydration/rehydration in carbonate-rich surface exposures of the 2008 Wenchuan Earthquake fault:Geochemical evidence and implications for fault zone evolution and coseismic slip. Journal of Geophysical Research:Solid Earth, 118(2):474-496. Chen J Y, Yang X S, Ma S L, et al. 2016. Hydraulic properties of samples retrieved from the Wenchuan earthquake fault scientific drilling project hole-1 (WFSD-1) and the surface rupture zone:implications for coseismic slip weakening and fault healing. Geochemistry, Geophysics, Geosystems, 17(7):2717-2744, doi:10. 1002/2016GC006376. Duan Q B, Yang X S, Ma S L, et al. 2016. Fluid-rock interactions in seismic faults:Implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake, China. Tectonophysics, 666:260-280. Duba A, Heikamp S, Meurer W, et al. 1994. Evidence from borehole samples for the role of accessory minerals in lower-crustal conductivity. Nature, 367(6458):59-61. Duba A, Huengest E, Nover G, et al. 1988. Impedance of black shale from Münsterland I borehole:an anomalously good conductor?. Geophysical Journal, 94(3):413-419. Duba A G, Shankland T J. 1982. Free carbon & electrical conductivity in the Earth's mantle. Geophysical Research Letters, 9(11):1271-1274. Frost B R, Fyfe W S, Tazaki K, et al. 1989. Grain-boundary graphite in rocks and implications for high electrical conductivity in the lower crust. Nature, 340(6229):134-136. Glover P W J. 1996. Graphite and electrical conductivity in the lower continental crust:a review. Physics and Chemistry of the Earth, 21(4):279-287. Glover P W J, Vine F J. 1992. Electrical conductivity of carbon-bearing granulite at raised temperatures and pressures. Nature, 360(6406):723-726. Gueguen Y, Dienes J. 1989. Transport properties of rocks from statistics and percolation. Mathematical Geology, 21(1):1-13. Haak V, Simpson F, Bahr K, et al. 1997. KTB and the electrical conductivity of the crust. Journal of Geophysical Research:Solid Earth, 102(B8):18289-18306. Hill R. 1952. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society, Section A, 65(5):349-354. Huebner J S, Dillenburg R G. 1995. Impedance spectra of hot, dry silicate minerals and rock:Qualitative interpretation of spectra. American Mineralogist, 80(1-2):46-64. Liu-Zeng J, Wen L, Sun J, et al. 2010. Surficial slip and rupture geometry on the Beichuan Fault near Hongkou during the MW7.9 Wenchuan Earthquake, China. Bulletin of the Seismological Society of America, 100(5B):2615-2650. J dicke H. 1992. Water and graphite in the Earth's crust——an approach to interpretation of conductivity models. Surveys in Geophysics, 13(4-5):381-407. J dicke H, Kruhl J H, Ballhaus C, et al. 2004. Syngenetic, thin graphite-rich horizons in lower crustal rocks from the Serre San Bruno, Calabria (Italy), and implications for the nature of high-conducting deep crustal layers. Physics of the Earth and Planetary Interiors, 141(1):37-58. J dicke H, Nover G, Kruhl J H, et al. 2007. Electrical properties of a graphite-rich quartzite from a former lower continental crust exposed in the Serre San Bruno, Calabria (southern Italy). Physics of the Earth and Planetary Interiors, 165(1-2):56-67. Jones A G. 1992. Electrical conductivity of the continental lower crust.//Fountain D M, Arculus R J, Kay R W eds. Continental Lower Crust. Amsterdam:Elsevier Science Publishers, 81-143. Kuo L W, Li H B, Smith S A F, et al. 2014. Gouge graphitization and dynamic fault weakening during the 2008 MW7.9 Wenchuan earthquake. Geology, 42(1):47-50. Laumonier M, Gaillard F, Sifre D. 2015. The effect of pressure and water concentration on the electrical conductivity of dacitic melts:implication for magnetotelluric imaging in subduction areas. Chemical Geology, 418:66-76. Liu J, Li H B, Zhang J J, et al. 2016. Origin and formation of carbonaceous material veins in the 2008 Wenchuan earthquake fault zone. Earth, Planets and Space, 68(1):19. Manatschal G. 1999. Fluid-and reaction-assisted low-angle normal faulting:evidence from rift-related brittle fault rocks in the Alps (Err Nappe, eastern Switzerland). Journal of Structural Geology, 21(7):777-793. Mareschal M, Fyfe W S, Percival J, et al. 1992. Grain-boundary graphite in Kapuskasing gneisses and implications for lower-crustal conductivity. Nature, 357(6380):674-676. Mathez E A, Roberts J J, Duba A G, et al. 2008. Carbon deposition during brittle rock deformation:changes in electrical properties of fault zones and potential geoelectric phenomena during earthquakes. Journal of Geophysical Research:Solid Earth, 113(B12):B12201. Nesbitt B E. 1993. Electrical resistivities of crustal fluids. Journal of Geophysical Research:Solid Earth, 98(B3):4301-4310. Nover G. 2005. Electrical properties of crustal and mantle rocks-a review of laboratory measurements and their explanation. Surveys in Geophysics, 26(5):593-651. Nover G, Heikamp S, Meurer H J, et al. 1998. In-situ electrical conductivity and permeability of mid-crustal rocks from the ktb drilling:consequences for high conductive layers in the earth crust. Surveys in Geophysics, 19(1):73-85. Nover G, Stoll J B, Von Der G nna J. 2005. Promotion of graphite formation by tectonic stress-a laboratory experiment. Geophysical Journal International, 160(3):1059-1067. Oohashi K, Hirose T, Kobayashi K, et al. 2012. The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan:origins and implications for fault creep. Journal of Structural Geology, 38:39-50. Oohashi K, Hirose T, Shimamoto T. 2011. Shear-induced graphitization of carbonaceous materials during seismic fault motion:experiments and possible implications for fault mechanics. Journal of Structural Geology, 33(6):1122-1134. Pierson H. 1993. Handbook of Carbon, Graphite, Diamond, and Fullerenes:Properties, Processing and Applications. New York:Noyes Publications. Scarlato P, Poe B T, Freda C, et al. 2004. High-pressure and high-temperature measurements of electrical conductivity in basaltic rocks from Mount Etna, Sicily, Italy. Journal of Geophysical Research:Solid Earth, 109(B4):B02210. Schilling F R, Partzsch G M, Brasse H, et al. 1997. Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data. Physics of the Earth and Planetary Interiors, 103(1-2):17-31. Shankland T J, Duba A G, Mathez E A, et al. 1997. Increase of electrical conductivity with pressure as an indicator of conduction through a solid phase in midcrustal rocks. Journal of Geophysical Research:Solid Earth, 102(B7):14741-14750. Shimojuku A, Yoshino T, Yamazaki D, et al. 2012. Electrical conductivity of fluid-bearing quartzite under lower crustal conditions. Physics of the Earth and Planetary Interiors, 198-199:1-8. Si J L, Li H B, Kuo L W, et al. 2014. Clay mineral anomalies in the Yingxiu-Beichuan fault zone from the WFSD-1 drilling core and its implication for the faulting mechanism during the 2008 Wenchuan earthquake (MW7.9). Tectonophysics, 619-620:176-178. Sibson R. 1977. Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3):191-213. Stauffer D, Aharony A. 2003. Introduction to Percolation Theory. London:Taylor & Francis. Sun J, Jin G W, Bai D H, et al. 2003. Sounding of electrical structure of the crust and upper mantle along the eastern border of Qinghai-Tibet Plateau and its tectonic significance. Science in China Series D:Earth Sciences, 46(S2):243-253. Ten Grotenhuis S M, Drury M R, Peach C J, et al. 2004. Electrical properties of fine-grained olivine:evidence for grain boundary transport. Journal of Geophysical Research:Solid Earth, 109(B6):B06203. Togo T, Shimamoto T, Ma S L, et al. 2011. Internal structure of Longmenshan fault zone at Hongkou outcrop, Sichuan, China, that caused the 2008 Wenchuan earthquake. Earthquake Science, 24(3):249-265. Wang D J, Karato S I, Jiang Z T. 2013. An experimental study of the influence of graphite on the electrical conductivity of olivine aggregates. Geophysical Research Letters, 40(10):2028-2032. Wang H, Li H B, Si J L, et al. 2014a. Internal structure of the Wenchuan earthquake fault zone, revealed by surface outcrop and WFSD-1 drilling core investigation. Tectonophysics, 619-620:101-114. Wang X B, Luo W, Zhang G, et al. 2013. Electrical resistivity structure of Longmenshan crust-mantle under sector boundary. Chinese Journal of Geophysics (in Chinese), 56(8):2718-2727, doi:10.6038/cjg20130820. Wang X B, Zhu Y T, Zhao X K, et al. 2009. Deep conductivity characteristics of the Longmen Shan,Eastern Qinghai-Tibet Plateau. Chinese Journal of Geophysics (in Chinese), 52(2):564-571. Wang X B, Zhang G, Fang H, et al. 2014b. Crust and upper mantle resistivity structure at middle section of Longmenshan, eastern Tibetan plateau. Tectonophysics, 619-620:143-148. Watson H C, Roberts J J, Tyburczy J A. 2010. Effect of conductive impurities on electrical conductivity in polycrystalline olivine. Geophysical Research Letters, 37(2):L02302. Xu X W, Wen X Z, Ye J Q, et al. 2008. the MS8.0 wenchuan earthquake surface ruptures and its seismogenic structure. Seismology and Geology (in Chinese), 30(3):597-629. Xu X W, Wen X Z, Yu G H, et al. 2009. Coseismic reverse-and oblique-slip surface faulting generated by the 2008 MW7.9 Wenchuan earthquake, China. Geology, 37(6):515-518. Yang X Z, Keppler H, McCammon C, et al. 2011. Effect of water on the electrical conductivity of lower crustal clinopyroxene. Journal of Geophysical Research:Solid Earth, 116(B4):B04208. Yang X Z, Keppler H, McCammon C, et al. 2012. Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contributions to Mineralogy and Petrology, 163(1):33-48. Yang X S, Yang Y, Chen J Y. 2014. Pressure dependence of density, porosity, compressional wave velocity of fault rocks from the ruptures of the 2008 Wenchuan earthquake, China. Tectonophysics, 619-620:133-142. Yang Y, Chen J Y, Yang X S. 2014. Experimental studies on relationship between P-wave velocity and porosity of fault rocks from the rupture of the 2008 Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 57(6):1883-1890, doi:10.6038/cjg20140619. Zhang P Z, Xu X W, Wen X Z, et al. 2008. Slip rates and recurrence intervals of the Longmen Shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China. Chinese Journal of Geophysics (in Chinese), 51(4):1066-1073, doi:10.3321/j.issn:0001-5733.2008.04.015. Zhao G, Unsworth M J, Zhan Y, et al. 2012. Crustal structure and rheology of the Longmenshan and Wenchuan MW7.9 earthquake epicentral area from magnetotelluric data. Geology, 40(12):1139-1142. Zulauf G, Palm S, Petschick R, et al. 1999. Element mobility and volumetric strain in brittle and brittle-viscous shear zones of the superdeep well KTB (Germany). Chemical Geology, 156(1-4):135-149. 王绪本, 罗威, 张刚等. 2013. 扇形边界条件下的龙门山壳幔电性结构特征. 地球物理学报, 56(8):2718-2727, doi:10.6038/cjg20130820. 王绪本, 朱迎堂, 赵锡奎等. 2009. 青藏高原东缘龙门山逆冲构造 深部电性结构特征. 地球物理学报, 52(2):564-571. 徐锡伟, 闻学泽, 叶建青等. 2008. 汶川MS8.0地震地表破裂带及其发震构造. 地震地质, 30(3):597-629. 杨彧, 陈进宇, 杨晓松. 2014. 汶川地震破裂带断层岩纵波速度与孔隙度关系的实验研究:地球物理学报, 57(6):1883-1890, doi:10.6038/cjg20140619. 张培震, 徐锡伟, 闻学泽等. 2008. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因. 地球物理学报, 51(4):1066-1073, doi:10.3321/j.issn:0001-5733.2008.04.015.