WANG Gang,
WEI Wen-Bo,
JIN Sheng et al
.2017.A study on the electrical structure of eastern Gangdese metallogenic belt.Chinese Journal Of Geophysics,60(8): 2993-3003,doi: 10.6038/cjg20170808
A study on the electrical structure of eastern Gangdese metallogenic belt
WANG Gang1, WEI Wen-Bo1,2, JIN Sheng1,2, ZHANG Le-Tian1, DONG Hao1, XIE Cheng-Liang1, GUO Ze-Qiu1
1. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China; 2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Abstract:The famous Gangdese metallogenic belt hosts many large ore deposits within its eastern part. In order to examine the electrical structure of this region, the magnetotelluric data covering the main ore deposits were carefully processed and analyzed. A reliable electrical model was obtained using both two-dimensional and three-dimensional inversions. Combined with other geological and geophysical observations, our electrical model reveals that the ore deposits distribution can be interpreted as: (1) Ore deposits are located in electrical boundaries in the shallow crust. (2) The conductors observed in middle crust may have played a key role in the distribution of ore deposits, through buried north-south direction faults in the upper crust. (3) We propose that the intersection regions of north-south extensional structures and east-west thrust can be regarded as important metallogenic zones. (4) The lower crust may have been influenced by the asthenospheric upwelling and then became partially melted. The partially melted lower crust, together with the conductors in middle crust may have controlled the mineralization process in the upper crust.
Bahr K. 1991. Geological noise in magnetotelluric data: a classification of distortion types. Physics of the Earth and Planetary Interiors, 66(1-2): 24-38. Cai J T, Chen X B. 2010. Refined techniques for data processing and two-dimensional inversion in magnetotelluric Ⅱ: Which data polarization mode should be used in 2D inversion. Chinese Journal of Geophysics (in Chinese), 53(11): 2703-2714, doi: 10.3969/j.issn.0001-5733.2010.11.018. Geng Q R, Pan G T, Wang L Q, et al. 2006. Isotopic geochronology of the volcanic rocks from the Yeba Formation in the Gangdise zone, Xizang. Sedimentary Geology and Tethyan Geology (in Chinese), 26(1): 1-7. Groom R W, Bailey R C. 1989. Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion. Journal of Geophysical Research: Solid Earth, 94(B2): 1913-1925. Guynn J H, Kapp P, Pullen A, et al. 2006. Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505-508. Harrison T M. 2006. Did the Himalayan crystallines extrude partially molten from beneath the Tibetan Plateau? Geological Society, London. Special Publications, 268(1): 237-254. Hou Z Q, Duan L F, Lu Y J, et al. 2015. Lithospheric Architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. Ji W Q, Wu F Y, Chung S L, et al. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229-245. Kapp J L D, Harrison T M, Kapp P, et al. 2005. Nyainqentanglha Shan: a window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. Journal of Geophysical Research: Solid Earth, 110(B8): B08413. Li S H, Unsworth M J, Booker J R, et al. 2003. Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophysical Journal International, 153(2): 289-304. Liang X F, Chen Y, Tian X B, et al. 2016. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography. Earth and Planetary Science Letters, 443: 162-175. Liu Q S, Wu Z H, Ye P S, et al. 2005. Isotopic dating of the Nyainqentanglha granite and its significance. Acta Geologica Sinica (in Chinese), 79(3): 331-337. Makovsky Y, Klemperer S L. 1999. Measuring the seismic properties of Tibetan bright spots: Evidence for free aqueous fluids in the Tibetan middle crust. Journal of Geophysical Research: Solid Earth, 104(B5): 10795-10825. McNeice G W, Jones A G. 2001. Multisite, multifrequency tensor decomposition of magnetotelluric data. Geophysics, 66(1): 158-173. Mo X X, Zhao Z D, Deng J F, et al. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers (in Chinese), 10(3): 135-148. Mo X X, Dong G C, Zhao Z D, et al. 2005. Timing of magma mixing in the Gangdisê Magmatic Belt during the India-Asia collision: zircon SHRIMP U-Pb dating. Acta Geologica Sinica, 79(1): 66-76. Mo X X, Zhao Z D, Don J D, et al. 2006. Three types of collisional and post-collisional magmatism in the Lhasa block, Tibet and implications for India intra-continental subduction and mineralization: evidence from Sr-Nd isotopes. Acta Petrologica Sinica (in Chinese), 22(4): 795-803. Mo X X, Dong G C. 2013. The Map of Structure and Magmatic Rocks on Tibetan Plateau. Beijing: Geology Publishing House (in Chinese). Nábělek J, Hetényi G, Vergne J, et al. 2009. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325(5946): 1371-1374. Nábělek P I, Nábělek J L. 2014. Thermal characteristics of the Main Himalaya Thrust and the Indian lower crust with implications for crustal rheology and partial melting in the Himalaya orogen. Earth and Planetary Science Letters, 395: 116-123. Renner J, Evans B, Hirth G. 2000. On the rheologically critical melt fraction. Earth and Planetary Science Letters, 181(4): 585-594. Rippe D, Unsworth M. 2010. Quantifying crustal flow in Tibet with magnetotelluric data. Physics of the Earth and Planetary Interiors, 179(3-4): 107-121. Rodi W, Mackie R L. 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66(1): 174-187. Rosenberg C L, Handy M R. 2005. Experimental deformation of partially melted granite revisited: implications for the continental crust. Journal of Metamorphic Geology, 23(1): 19-28. Shi D N, Wu Z H, Klemperer S L, et al. 2015. Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India-Tibet continental collision zone. Earth and Planetary Science Letters, 414: 6-15. Siripunvaraporn W, Egbert G, Lenbury Y, et al. 2005a. Three-dimensional magnetotelluric inversion: data-space method. Physics of the Earth and Planetary Interiors, 150(1-3): 3-14. Siripunvaraporn W, Egbert G, Uyeshima M. 2005b. Interpretation of two-dimensional magnetotelluric profile data with three-dimensional inversion: synthetic examples. Geophysical Journal International, 160(3): 804-814. Swift C M. 1967. A Magnetotelluric Investigation of an Electrical Conductivity Anomaly in the Southwestern United States. Cambridge: Massachusetts Institute of Technology. Tang J X, Duo J, Liu H F, et al. 2012. Minerogenetic series of ore deposits in the east part of the Gangdise metallogenic belt. Acta Geoscientica Sinica (in Chinese), 33(4): 393-410. Tang J X, Wang L Q, Zheng W B, et al. 2014. Ore deposits metallogenic regularity and prospecting in the eastern section of the Gangdese metallogenic belt. Acta Geologica Sinica (in Chinese), 88(12): 2545-2555. Tian X B, Chen Y, Tseng T L, et al. 2015. Weakly coupled lithospheric extension in southern Tibet. Earth and Planetary Science Letters, 430: 171-177. Unsworth M J, Jones A G, Wei W B, et al. 2005. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature, 438(7064): 78-81. Wang R, Richards J P, Zhou L M, et al. 2015. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo deposits in the Gangdese belt, southern Tibet. Earth-Science Reviews, 150: 68-94. Wang G, Wei W B, Jin S, et al. under review. 3-D electrical structure across the Yadong-Gulu rift revealed by magnetotelluric data: new insights on the extension of the upper crust and the geometry of the underthrusting Indian lithospheric slab in southern Tibet. Earth and Planetary Science Letters. Wei W B, Unsworth M, Jones A, et al. 2001. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science, 292(5517): 716-719. Wei W B, Jin S, Ye G F, et al. 2010. Conductivity structure and rheological property of lithosphere in Southern Tibet inferred from super-broadband magnetotelluric sounding. Science China Earth Sciences, 53(2): 189-202. Weller O M, St-Onge M R, Rayner N, et al. 2016. Miocene magmatism in the Western Nyainqentanglha mountains of southern Tibet: an exhumed bright spot? Lithos, 245: 147-160. Wittlinger G, Farra V, Hetényi G, et al. 2009. Seismic velocities in Southern Tibet lower crust: a receiver function approach for eclogite detection. Geophysical Journal International, 177(3): 1037-1049. Wu Z H, Hu D G, Liu Q S, et al. 2005. Chronological analyses of the thermal evolution of granite and the uplift process of the Nyainqentanglha Range in central Tibet. Acta Geoscientica Sinica (in Chinese), 26(6): 505-512. Xie C L, Jin S, Wei W B, et al. 2016. Crustal electrical structures and deep processes of the eastern Lhasa terrane in the south Tibetan plateau as revealed by magnetotelluric data. Tectonophysics, 675: 168-180. Xu Q, Zhao J M, Yuan X H, et al. 2015. Mapping crustal structure beneath southern Tibet: seismic evidence for continental crustal underthrusting. Gondwana Research, 27(4): 1487-1493. Yan Y L, Ma X B, Chen Y, et al. 2012. The study of magnetotelluric sounding on Coqe-Xainza profile in Tibet. Chinese Journal of Geophysics (in Chinese), 55(8): 2636-2642, doi: 10.6038/j.issn.0001-5733.2012.08.015. Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. Zhang L T, Jin S, Wen W B, et al. 2012. Electrical structure of crust and upper mantle beneath the eastern margin of the Tibetan plateau and the Sichuan basin. Chinese Journal of Geophysics (in Chinese), 55(12): 4126-4137, doi: 10.6038/j.issn.0001-5733.2012.12.025. Zhao W J. 2016. A discussion on the regional tectonic-magmatic activity and the metallogensis of Gangdise porphyry copper belt based on the deep structure of continent-continent collision belt in southern Tibet. Acta Geoscientica Sinica (in Chinese), 37(1): 7-24. Zheng Y C, Fu Q, Hou Z Q, et al. 2015. Metallogeny of the northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W polymetallic belt in the Lhasa terrane, southern Tibet. Ore Geology Reviews, 70: 510-532. Zhong K H, Li L, Zhou H W, et al. 2012. Features of Jiama (Gyama)-Kajunguo thrust-gliding nappe tectonic system in Tibet. Acta Geoscientica Sinica (in Chinese), 33(4): 411-423. Zhu D C, Mo X X, Niu Y L, et al. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 268(3-4): 298-312. Zhu D C, Zhao Z D, Niu Y L, et al. 2011. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255. Zhu D C, Wang Q, Zhao Z D, et al. 2015. Magmatic record of India-Asia collision. Scientific Reports, 5: 14289. 蔡军涛, 陈小斌. 2010. 大地电磁资料精细处理和二维反演解释技术研究(二)——反演数据极化模式选择. 地球物理学报 53(11): 2703-2714, doi: 10.3969/j.issn.0001-5733.2010.11.018. 耿全如, 潘桂棠, 王立全等. 2006. 西藏冈底斯带叶巴组火山岩同位素地质年代. 沉积与特提斯地质, 26(1): 1-7. 刘琦胜, 吴珍汉, 叶培盛等. 2005. 念青唐古拉花岗岩的同位素年龄测定及其地质意义. 地质学报, 79(3): 331-337. 莫宣学, 赵志丹, 邓晋福等. 2003. 印度—亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. 莫宣学, 赵志丹, Don J D等. 2006. 青藏高原拉萨地块碰撞-后碰撞 岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示: Sr-Nd同位素证据. 岩石学报, 22(4): 795-803. 莫宣学, 董国臣. 2013. 青藏高原及邻区构造-岩浆岩图及说明书(1: 1500000). 北京: 地质出版社. 唐菊兴, 多吉, 刘鸿飞等. 2012. 冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究. 地球学报, 33(4): 393-410. 唐菊兴, 王立强, 郑文宝等. 2014. 冈底斯成矿带东段矿床成矿规律及找矿预测. 地质学报, 88(12): 2545-2555. 吴珍汉, 胡道功, 刘琦胜等. 2005. 念青唐古拉花岗岩热演化历史和山脉隆升过程的热年代学分析. 地球学报, 26(6): 505-512. 张乐天, 金胜, 魏文博等. 2012. 青藏高原东缘及四川盆地的壳幔导电性结构研究. 地球物理学报, 55(12): 4126-4137, doi: 10.6038/j.issn.0001-5733.2012.12.025. 赵文津. 2016. 从藏南陆-陆碰撞带深部结构构造演化探讨斑岩铜矿的成岩成矿问题. 地球学报, 37(1): 7-24. 钟康惠, 李磊, 周慧文等. 2012. 西藏甲玛-卡军果推-滑覆构造系特征. 地球学报, 33(4): 411-423. 闫永利, 马晓冰, 陈赟等. 2012. 西藏错勤—申扎剖面大地电磁测深研究. 地球物理学报, 55(8): 2636-2642, doi: 10.6038/j.issn.0001-5733.2012.08.015.