WANG Wei-Hong,
ZHANG Wei,
SHI Ying et al
.2017.Elastic reverse time migration based on wavefield separation.Chinese Journal Of Geophysics,60(7): 2813-2824,doi: 10.6038/cjg20170726
Elastic reverse time migration based on wavefield separation
WANG Wei-Hong1, ZHANG Wei1, SHI Ying1,2, KE Xuan1
1. Earth Science College of Northeast Petroleum University, Heilongjiang Daqing 163318, China; 2. Science and Technology Innovation Team on Fault Deformation, Sealing and Fluid Migration, Heilongjiang Daqing 163318, China
Abstract:Compared with other imaging algorithms (e.g., ray-based and one-way wave equation), reverse time migration (RTM) based on two-way wave equation exhibits great superiority, especially in dealing with steeply dipping structures. However, imaging with conventional single-component seismic data may become imperfect in some complicated structures (e.g., gas clouds). The elastic reverse time migration based on the elastodynamic equation using multi-component seismic data can extract PP and PS reflectivity containing subsurface information, thus it can be more consistent with characteristics of elastic wave propagation in the real earth's medium, and resulting seismic images can more accurately characterize the subsurface. To begin with, we employ the first-order velocity-stress equations to implement extrapolation of elastic vector wavefields, and separate P-and S-wavefields by computing the divergence and curl operators of the extrapolated velocity vector wavefields. Then, imaging data with pure wave modes can be computed by applying the source normalized cross-correlation imaging condition, thus avoiding the crosstalk between the unseparated wave modes. To address the polarity reversal problem of converted images, we propose an alternative method in the shot domain. We also develop an efficient method that reconstructs source wavefields in the reverse time direction to save storage in CPU and avoid large input/output for elastic reverse time migration. During the forward modeling, the method only saves velocity vector wavefields of all time interval within an efficient absorbing boundary and total wavefields in the last time interval. When we extrapolate the receiver wavefields in reverse time direction, simultaneously, we reconstruct the total source wavefields by the saved wavefields. Numerical examples with a graben and Marmousi2 models show that the polarity reversal correction method works well and that elastic reverse time migration can generate accurate images for complicated structures.
Baysal E, Kosloff D D, Sherwood J W C. 1983. Reverse time migration. Geophysics, 48(11):1514-1524, doi:10.1190/1.1441434. Chang W F, McMechan G A. 1987. Elastic reverse-time migration. Geophysics, 52(10):1365-1375, doi:10.1190/1.1442249. Chang W F, McMechan G A. 1994. 3-D elastic prestack, reverse-time depth migration. Geophysics, 59(4):597-609, doi:10.1190/1.1443620. Chattopadhyay S, McMechan G A. 2008. Imaging conditions for prestack reverse-time migration. Geophysics, 73(3):S81-S89, doi:10.1190/1.2903822. Clapp R G. 2009. Reverse time migration with random boundaries.//79th Annual International Meeting, SEG. Expanded Abstracts, 2809-2813. Du Q Z, Zhu Y T, Ba J. 2012. Polarity reversal correction for elastic reverse time migration. Geophysics, 77(2):S31-S41, doi:10.1190/geo2011-0348.1. Duan Y T, Sava P. 2015. Scalar imaging condition for elastic reverse time migration. Geophysics, 80(4):S127-S136, doi:10.1190/geo2014-0453.1. Feng B, Wang H Z. 2012. Reverse time migration with source wavefield reconstruction strategy. J. Geophys. Eng., 9(1):69-74, doi:10.1088/1742-2132/9/1/008. Gu B L, Li Z Y, Ma X N, et al. 2015. Multi-component elastic reverse time migration based on the P-and S-wave separated velocity-stress equations. Journal of Applied Geophysics, 112:62-78, doi:10.1016/j.jappgeo.2014.11.008. Jin H, McMechan G A, Nguyen B. 2015. Improving input/output performance in 2D and 3D angle-domain common-image gathers from reverse time migration. Geophysics, 80(2):S65-S77, doi:10.1190/GEO2014-0209.1. Li B, Liu H W, Liu G F, et al. 2010. Computational strategy of seismic pre-stack reverse time migration on CPU/GPU. Chinese J. Geophys. (in Chinese), 53(12):2938-2943, doi:10.3969/j.issn.0001-5733.2010.12.017. Li Z Y, Ma X N, Fu C, et al. 2016. Wavefield separation and polarity reversal correction in elastic reverse time migration. Journal of Applied Geophysics, 127:56-67, doi:10.1016/j.jappgeo.2016.02.012. Liu G F, Liu H, Li B, et al. 2009. Method of prestack time migration of seismic data of mountainous regions and its GPU implementation. Chinese J. Geophys. (in Chinese), 52(12):3101-3108, doi:10.3969/j.issn.0001-5733.2009.12.019. Liu H W, Li B, Liu H, et al. 2010. The algorithm of high order finite difference pre-stack reverse time migration and GPU implementation. Chinese J. Geophys. (in Chinese), 53(7):1725-1733, doi:10.3969/j.issn.0001-5733.2010.07.024. Loewenthal D, Mufti I R. 1983. Reversed time migration in spatial frequency domain. Geophysics, 48(5):627-635, doi:10.1190/1.1441493. Madariaga R. 1976. Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3):639-666. Martin G S, Wiley R, Marfurt K J. 2006. Marmousi2:An elastic upgrade for Marmousi. The Leading Edge, 25(2):156-166, doi:10.1190/1.2172306. McMechan G A. 1983. Migration by extrapolation of time-dependent boundary values. Geophysical Prospecting, 31(3):413-420, doi:10.1111/j.1365-2478.1983.tb01060.x. Nguyen B D, McMechan G A. 2013. Excitation amplitude imaging condition for prestack reverse-time migration. Geophysics, 78(1):S37-S46, doi:10.1190/GEO2012-0079.1. Nguyen B D, McMechan G A. 2015. Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration. Geophysics, 80(1):S1-S8, doi:10.1190/geo2014-0014.1. Rosales D, Rickett J. 2001. PS-wave polarity reversal in angle domain common-image gathers.//71st Annual International Meeting, SEG. Expanded Abstracts, 1843-1846. Rosales D A, Fomel S, Biondi B, et al. 2008. Wave-equation angle-domain common-image gathers for converted waves. Geophysics, 73(1):S17-S26, doi:10.1190/1.2821193. Sun R, McMechan G A. 1986. Pre-stack reverse-time migration for elastic waves with application to synthetic offset vertical seismic profiles. Proc. IEEE, 74(3):457-465, doi:10.1109/PROC.1986.13486. Symes W W. 2007. Reverse time migration with optimal checkpointing. Geophysics, 72(5):SM213-SM221, doi:10.1190/1.2742686. Virieux J. 1986. P-SV wave propagation in heterogeneous media:Velocity-stress finite-difference method. Geophysics, 51(4):889-901, doi:10.1190/1.1442147. Wang B L, Gao J H, Chen W C, et al. 2012. Efficient boundary storage strategies for seismic reverse time migration. Chinese J. Geophys. (in Chinese), 55(7):2412-2421, doi:10.6038/j.issn.0001-5733.2012.07.025. Wang W L, McMechan G A. 2015. Vector-based elastic reverse time migration. Geophysics, 80(6):S245-S258, doi:10.1190/geo2014-0620.1. Wang W L, McMechan G A, Tang C, et al. 2016. Up/down and P/S decompositions of elastic wavefields using complex seismic traces with applications to calculating Poynting vectors and angle-domain common-image gathers from reverse time migrations. Geophysics, 81(4):S181-S194, doi:10.1190/geo2015-0456.1. Whitmore N D. 1983. Iterative depth migration by backward time propagation.//53rd Annual International Meeting, SEG. Expanded Abstracts, 827-830. Yan J, Sava P. 2008. Isotropic angle-domain elastic reverse-time migration. Geophysics, 73(6):S229-S239, doi:10.1190/1.2981241. Zhang Q S, McMechan G A. 2011a. Direct vector-field method to obtain angle-domain common-image gathers from isotropic acoustic and elastic reverse time migration. Geophysics, 76(5):WB135-WB149, doi:10.1190/geo2010-0314.1. Zhang Q S, McMechan G A. 2011b. Common-image gathers in the incident phase-angle domain from reverse time migration in 2D elastic VTI media. Geophysics, 76(6):S197-S206, doi:10.1190/geo2011-0015.1. 李博, 刘红伟, 刘国峰等. 2010. 地震叠前逆时偏移算法的CPU/GPU实施对策. 地球物理学报, 53(12):2938-2943, doi:10.3969/j.issn.0001-5733.2010.12.017. 刘国峰, 刘洪, 李博等. 2009. 山地地震资料叠前时间偏移方法及其GPU实现. 地球物理学报, 52(12):3101-3108, doi:10.3969/j.issn.0001-5733.2009.12.019. 刘红伟, 李博, 刘洪等. 2010. 地震叠前逆时偏移高阶有限差分算法及GPU实现. 地球物理学报, 53(7):1725-1733, doi:10.3969/j.issn.0001-5733.2010.07.024. 王保利, 高静怀, 陈文超等. 2012. 地震叠前逆时偏移的有效边界存储策略. 地球物理学报, 55(7):2412-2421, doi:10.6038/j.issn.0001-5733.2012.07.025.