PAN Jia-Tie,
LI Yong-Hua,
WU Qing-Ju et al
.2017.Phase velocity maps of Rayleigh wave based on a dense coverage and portable seismic array in NE Tibetan plateau and its adjacent regions.Chinese Journal Of Geophysics,60(6): 2291-2303,doi: 10.6038/cjg20170621
Phase velocity maps of Rayleigh wave based on a dense coverage and portable seismic array in NE Tibetan plateau and its adjacent regions
PAN Jia-Tie1,2, LI Yong-Hua1,2, WU Qing-Ju1,2, DING Zhi-Feng1,2, YU Da-Xin3
1. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China; 2. Key Laboratory of Seismic Observation and Geophysical Imaging, Institute of Geophysics, China Earthquake Administration, Beijing 100081, China; 3. First Crust Monitoring and Application Center, China Earthquake Administration, Tianjin 300180, China
Abstract:The northeastern margin of the Tibetan Plateau and its adjacent regions are important transition zones, where the orientation of the India-Eurasian collision effect converts to the NE-SW or E-W from the N-S trending. Many strong earthquakes occurred in this region. It is a key place to study the geodynamics of the Tibetan Plateau. In this paper, we collected the vertical component of teleseismic data recorded by 674 broadband stations of the portable seismic array deployed under the project "China Seismic Array-northern part of North-South seismic belt" from Sep. 2013 to Aug. 2014. A total number of 18491 independent inter-station phase velocity dispersion curves of Rayleigh wave were measured by a frequency-time analysis method based on a continuous wavelet transform. In addition, all of these dispersion data were arranged into a tomographic inversion scheme, called Ditmar &Yanovskaya, to obtain the phase velocity maps at periods ranging from 10 s to 80 s in the study region. Our tomographic results are in agreement with previous studies on the distribution of the phase velocities. It shows obviously lateral inhomogeneity of the phase velocity in the study area. At short periods (e.g., 10~15 s), the distribution of phase velocities is well related to the surface geology and topography. At intermediate periods (e.g., 20~40 s), the distribution of phase velocities is significantly affected by the thickness of the crust. At long periods (e.g., 60~80 s), it shows more obvious and integrated high-speed anomalies beneath the Ordos block than that of the Alxa block, indicating that the upper mantle of the Alxa block is not as stable as the Ordos block, although both of these two blocks belong to the North China craton. The Tibetan Plateau is imaged as obvious low-speed anomalies in comparison with the surrounding blocks at all interested periods, indicating that the Tibetan Plateau has active structures of the crust and upper mantle. Low velocity layers (LVL) are imaged in the upper-middle crust of the Songpan-Garzê and the Northwestern Qilian blocks. The dispersion curves calculated from the global reference model Crust1.0 and Lithos1.0 are not consistent with our observed dispersion curves, indicating that the inversion based on the phase velocity dispersion curves obtained from this study may greatly improve the models of Crust1.0 and Lithos1.0.
Bai D H, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging. Nat. Geosci., 3(5): 358-362. Bailey R C. 1990. Trapping of aqueous fluids in the deep crust. Geophys. Res. Lett., 17(8): 1129-1132. Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706. Deng Y F, Shen W S, Xu T, et al. 2015. Crustal layering in northeastern Tibet: A case study based on joint inversion of receiver functions and surface wave dispersion. Geophys. J. Int., 203(1): 692-706. Ditmar P G, Yanovskaya T B. 1987. Generalization of Backus-Gilbert method for estimation of lateral variations of surface wave velocities. Phys. Solid Earth Izvestia Acad. Sci. U. S. S. R., 3(6): 470-477. Gao R, Wang H Y, Wang C S, et al. 2011. Lithospheric deformation shortening of the northeastern Tibetan Plateau: Evidence from reprocessing of deep seismic reflection data. Acta Geoscientica Sinica (in Chinese), 32(5): 513-520. Gao R, Wang H Y, Yin A, et al. 2013. Tectonic development of the northeastern Tibetan Plateau as constrained by high-resolution deep seismic-reflection data. Lithosphere, 5(6): 555-574. Herrmann R B. 2013. Computer programs in seismology: An evolving tool for instruction and research. Seismol. Res. Lett., 84(6): 1081-1088, doi: 10.1785/0220110096. Huang Z X, Li H Y, Xu Y. 2013. Lithospheric S-wave velocity structure of the North-South Seismic Belt of China from surface wave tomography. Chinese J. Geophys. (in Chinese), 56(4): 1121-1131, doi: 10.6038/cjg20130408. Jiang C X, Yang Y J, Zheng Y. 2014. Penetration of mid-crustal low velocity zone across the Kunlun Fault in the NE Tibetan Plateau revealed by ambient noise tomography. Earth Planet. Sci. Lett., 406: 81-92. Kennett B L N, Engdahl E R, Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122(1): 108-124. Laske G, Masters G, Ma Z T, et al. 2013. Update on CRUST1.0—A 1-degree global model of earth's crust.//Geophysical Research Abstracts, Vol. 15, EGU2013-2658. Vienna: EGU. Li H Y, Shen Y, Huang Z X, et al. 2014a. The distribution of the mid-to-lower crustal low-velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography. J. Geophys. Res. Solid Earth, 119(3): 1954-1970, doi: 10.1002/2013JB010374. Li Y H, Wu Q J, Pan J T, et al. 2013. An upper-mantle S-wave velocity model for East Asia from Rayleigh wave tomography. Earth Planet. Sci. Lett., 377-378: 367-377. Li Y H, Pan J T, Wu Q J, et al. 2014b. Crustal and uppermost mantle structure of SE Tibetan plateau from Rayleigh-wave group-velocity measurements. Earthquake Science, 27(4): 411-419, doi: 10.1007/s11589-014-0090-z. Liu Q M, Zhao J M, Lu F, et al. 2014. Crustal structure of northeastern margin of the Tibetan Plateau by receiver function inversion. Sci. China Earth Sci., 57(4): 741-750. Meyer B, Tapponnier P, Bourjot L, et al. 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophys. J. Int., 135(1): 1-47. Müller H J, Raab S. 1997. Elastic wave velocities of granite at experimental simulated partial melting conditions. Phys. Chem. Earth, 22(1-2): 93-96. Pan J T, Wu Q J, Li Y H, et al. 2011. Rayleigh wave tomography of the phase velocity in North China. Chinese J. Geophys. (in Chinese), 54(1): 67-76, doi: 10.3969/j.issn.0001-5733.2011.01.008. Pan J T, Wu Q J, Li Y H, et al. 2014. Ambient noise tomography in northeast China. Chinese J. Geophys. (in Chinese), 57(3): 812-821, doi: 10.6038/cjg20140311. Pan J T, Li Y H, Wu Q J, et al. 2015. Phase velocity maps of Rayleigh waves in the southeast Tibetan plateau. Chinese J. Geophys. (in Chinese), 58(11): 3993-4006, doi: 10.6038/cjg20151109. Pasyanos M E, Masters T G, Laske G, et al. 2014. LITHO1.0: An updated crust and lithospheric model of the Earth. J. Geophys. Res. Solid Earth, 119(3): 2153-2173, doi: 10.1002/2013JB010626. Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313): 788-790. Sass P, Ritter O, Ratschbacher L, et al. 2014. Resistivity structure underneath the Pamir and Southern Tian Shan. Geophys. J. Int., 198(1):564-579. doi: 10.1093/gji/ggu146. Shen W S, Ritzwoller M H, Kang D, et al. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophys. J. Int., 206(2): 954-979, doi: 10.1093/gji/ggw175. Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547): 1671-1677. Teng J W, Wang F Y, Zhao W Z, et al. 2008. Velocity distribution of upper crust, undulation of sedimentary formation and crystalline basement beneath the Ordos basin in North China. Chinese J. Geophys. (in Chinese), 51(6): 1753-1766, doi: 10.3321/j.issn:0001-5733.2008.06.016. Wang C Y, Lou H, Lü Z Y, et al. 2008. S-wave crustal and upper mantle's velocity structure in the eastern Tibetan Plateau-deep environment of lower crustal flow. Sci. China Ser. D Earth Sci., 51(2): 263-274. Wang Q, Gao Y. 2014. Rayleigh wave phase velocity tomography and strong earthquake activity on the southeastern front of the Tibetan Plateau. Sci. China Earth Sci., 57(10): 2532-2542, doi: 10.1007/s11430-014-4908-2. Wang Q, Niu F L, Gao Y, et al. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data. Geophys. J. Int., 204(1): 167-179. Wang X C, Ding Z F, Wu Y, et al. 2017. Crustal thicknesses and Poisson's ratios beneath the northern section of the north-south seismic belt and surrounding areas in China. Chinese J. Geophys. (in Chinese),60(6):2080-2090,doi:10.6038/cjg20170605. Wang Y. 2001. Heat flow pattern and lateral variations of lithosphere strength in China mainland: Constraints on active deformation. Phys. Earth Planet. Inter., 126(3-4): 121-146. Wu F T, Levshin A. 1994. Surface-wave group velocity tomography of East Asia. Phys. Earth Planet. Inter., 84(1-4): 59-77. Wu Q J, Zheng X F, Pan J T, et al. 2009. Measurement of interstation phase velocity by wavelet transformation. Earthquake Science, 22(4): 425-429. Xiao Q B, Zhang J, Wang J J, et al. 2012. Electrical resistivity structures between the Northern Qilian Mountains and Beishan Block, NW China, and tectonic implications. Phys. Earth Planet. Inter., 200-201: 92-104, doi: 10.1016/j.pepi.2012.04.008. Xu L L, Rondenay S, van der Hilst R D. 2007. Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Phys. Earth Planet. Inter., 165(3-4): 176-193. Yang Y J, Zheng Y, Chen J, et al. 2010. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography. Geochem. Geophys. Geosyst., 11(8): Q08010, doi: 10.1029/2010GC003119. Yang Y J, Ritzwoller M H, Zheng Y, et al. 2012. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet. J. Geophys. Res. Solid Earth, 117(B4): B04303. doi: 10.1029/2011JB008810. Yanovskaya T B, Ditmar P G. 1990. Smoothness criteria in surface wave tomography. Geophys. J. Int., 102(1): 63-72. Yao H J, van der Hilst R D, de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophys. J. Int., 166(2): 732-744. Yi G X, Yao H J, Zhu J S, et al. 2008. Rayleigh-wave phase velocity distribution in China continent and its adjacent regions. Chinese J. Geophys. (in Chinese), 51(2): 402-411, doi: 10.3321/j.issn:0001-5733.2008.02.013. Yu D X, Li Y H, Wu Q J, et al. 2014. S-wave velocity structure of the northeastern Tibetan Plateau from joint inversion of Rayleigh wave phase and group velocities. Chinese J. Geophys. (in Chinese), 57(3): 800-811, doi: 10.6038/cjg20140310. Zhang H S, Gao R, Tian X B, et al. 2015. Crustal S-wave velocity beneath the northeastern Tibetan plateau inferred from teleseismic P-wave receiver functions. Chinese J. Geophys. (in Chinese), 58(11): 3982-3992, doi: 10.6038/cjg20151108. 高锐,王海燕,王成善等.2011.青藏高原东北缘岩石圈缩短变形——深地震反射剖面再处理提供的证据.地球学报,32(5): 513-520. 黄忠贤,李红谊,胥颐.2013.南北地震带岩石圈S波速度结构面波层析成像.地球物理学报,56(4): 1121-1131,doi: 10.6038/cjg20130408. 刘启民,赵俊猛,卢芳等.2014.用接收函数方法反演青藏高原东北缘地壳结构.中国科学: 地球科学,44(4): 668-679. 潘佳铁,吴庆举,李永华等.2011.华北地区瑞雷面波相速度层析成像.地球物理学报,54(1): 67-76,doi: 10.3969/j.issn.0001-5733.2011.01.008. 潘佳铁,吴庆举,李永华等.2014.中国东北地区噪声层析成像.地球物理学报,57(3): 812-821,doi: 10.6038/cjg20140311. 潘佳铁,李永华,吴庆举等.2015.青藏高原东南部地区瑞雷波相速度层析成像.地球物理学报,58(11): 3993-4006,doi: 10.6038/cjg20151109. 滕吉文,王夫运,赵文智等.2008.鄂尔多斯盆地上地壳速度分布与沉积建造和结晶基底起伏的构造研究.地球物理学报,51(6): 1753-1766,doi: 10.3321/j.issn:0001-5733.2008.06.016. 王琼,高原.2014.青藏东南缘背景噪声的瑞利波相速度层析成像及强震活动.中国科学: 地球科学,44(11): 2440-2450. 王兴臣, 丁志峰, 武岩等. 2017. 中国南北地震带北段及其周缘地壳厚度与泊松比研究. 地球物理学报,60(6):2080-2090,doi:10.6038/cjg20170605. 易桂喜,姚华建,朱介寿等.2008.中国大陆及邻区Rayleigh面波相速度分布特征.地球物理学报,51(2): 402-411,doi: 10.3321/j.issn:0001-5733.2008.02.013. 余大新,李永华,吴庆举等.2014.利用Rayleigh波相速度和群速度联合反演青藏高原东北缘S波速度结构.地球物理学报,57(3): 800-811,doi: 10.6038/cjg20140310. 张洪双,高锐,田小波等.2015.青藏高原东北缘地壳S波速度结构及其动力学含义——远震接收函数提供的证据.地球物理学报,58(11): 3982-3992,doi: 10.6038/cjg20151108.