YAO Rui,
YANG Shu-Xin,
XIE Fu-Ren et al
.2017.Analysis on magnitude characteristics of the shallow crustal tectonic stress field in Qinghai-Tibet plateau and its adjacent region based on in-situ stress data.Chinese Journal Of Geophysics,60(6): 2147-2158,doi: 10.6038/cjg20170610
Analysis on magnitude characteristics of the shallow crustal tectonic stress field in Qinghai-Tibet plateau and its adjacent region based on in-situ stress data
YAO Rui1,2, YANG Shu-Xin1,2, XIE Fu-Ren1,2, CUI Xiao-Feng1,2, LU Yuan-Zhong1,2, XU Zhao-Yi3
1. Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China; 2. Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China; 3. Beijing Jiaotong University, Beijing 100044, China
Abstract:Up to 2000 entries of in situ stress data measured by hydraulic fracturing and stress relief method within 21°N—40°N, 73°N—110°N, 0~2 km were selected from the "Database of Crustal Stress in China and Adjacent Area". After solving the problem of non-uniform distribution of stress data along the depth and removing the gravity contribution by limiting their upper and lower thresholds using the Heim's rule and Gennik's assumption, we studied the tectonic stress characteristics of the shallow crust in Qinghai-Tibet Plateau and its adjacent region. Our results show that: (1) In the entire study area, the maximum and minimum horizontal stress (σH, σh) in the shallow crust both increase linearly with depth (D) respectively: σH=22.115D+5.761, σh=14.893D+3.269. The estimated magnitude range of maximum and minimum horizontal tectonic stress (σT, σt) are 4.609< σT< 15.522D+4.609 (D >0) and 3.121< σt< 6.366D+3.121 (D >0) respectively. The difference of maximum and minimum horizontal tectonic stress (σT-σt) increases linearly with depth: σT-σt=7.222D+2.492, i. e. the value of σT-σt on surface is about 2.5 MPa and the gradient of σT-σt is 7.2 MPa·km-1. (2) In the Qinghai-Tibet block and N-S seismic belt, σT, σt, σT-σt all increase linearly with depth. At 1 km depth, the maximum value of σT in those blocks is 30.1 MPa, while the minimum value is 17.6 MPa. The estimated values of σT in different areas decrease in the following order: Qinghai-Tibet, north segment of north-south seismic belt, middle segment of north-south seismic belt and south segment of North-South seismic belt. At 1 km depth, the maximum value of σT-σt in those blocks is 15.8 MPa, while the minimum value is 8.9 MPa. The descending order of the values in different areas is same as above. In general, the tectonic stress magnitude is much higher in Qinghai-Tibet block than in N-S seismic belt. (3) Compared with the N-S seismic belt, the northward crustal compression in the Qinghai-Tibet block is relatively lower in magnitude in the shallow subsurface and higher in deep, apparently displays a "weaker in the shallow but stronger in the deep" feature.
Cai M F. 2000. Principle and Techniques of In-situ Stress Measurement (in Chinese). Beijing: Science Press, 200-270. Chen S S, Shi R D, Yi G D, et al. 2016. Middle Triassic volcanic rocks in the northern Qiangtang (Central Tibet): Geochronology, Petrogenesis, and Tectonic Implications. Tectonophysics, 666: 90-102. Chen S Y, Ma J, Liu P X, et al. 2014. Exploring the current tectonic activity with satellite remote sensing thermal information: A case of the Wenchuan earthquake. Seismology and Geology (in Chinese), 36(3): 775-793. Chevalier M L, Leloup P H, Replumaz A, et al. 2016. Tectonic-Geomorphology of the Litang fault system, SE Tibetan Plateau, and implication for regional seismic hazard. Tectonophysics, 682: 278-292. Deng Q D, Zhang Y M, Xu G L, et al. 1979. On the tectonic stress field in China and its relation to plate movement. Seismology and Geology (in Chinese), 1(1): 11-22. Ding H X, Hou Q Y, Zhang Z M. 2016. Petrogenesis and tectonic significance of the eocene adakite-like rocks in western Yunnan, southeastern Tibetan Plateau. Lithos, 245: 161-173. Eva E, Malusà M G, Solarino S. 2015. A seismotectonic picture of the inner southern western alps based on the analysis of anomalously deep earthquakes. Tectonophysics, 661: 190-199. Ge W P, Yuan D Y, Shao Y X, et al. 2015. Regional crustal deformation, tectonic geomorphology and seismogenic tectonic model of the northwestern Tibetan Plateau: case studies of the 2008 and 2014 Yutian (Xinjiang) Ms7.3 earthquakes. China Earthquake Engineering Journal (in Chinese), 37(3): 710-723. Ge X H. 2010. The origin of the north-south seismic tectonic belt in China.//The Petrological and Geodynamics Conference in 2010 (in Chinese). Beijing, 448-449. Guo G H, Zhang Z, Cheng J W, et al. 2015. Seismic anisotropy in the crust in northeast margin of Tibetan Palteau and tectonic implication. Chinese J. Geophys. (in Chinese), 58(11): 4092-4105, doi: 10.6038/cjg20151117. Guo H Z, Ma Q C, Xue X C, et al. 1983. The analytical method of the initial stress field for rock masses. Chinese Journal of Geotechnical Engineering (in Chinese), 5(3): 64-75. Guo X Y, Chen X Z, Wang S W, et al. 2014. Focal mechanism of small and moderate earthquakes and tectonic stress field in Sichuan-Yunan areas. China Earthquake Engineering Journal (in Chinese), 36(3): 599-607. Guo X Y, Rui G, Xiao X, et al. 2015. Longriba fault zone in eastern Tibet: An important tectonic boundary marking the westernmost edge of the Yangtze block. Tectonics, 34(5): 970-985. Hong L. 2016. Numerical simulation on modern tectonic stress field in the northeastern margin of Qinghai-Tibetan Plateau. Earthquake Research in Sichuan (in Chinese), (1): 30-37. Jing F, Sheng Q, Zhang Y H, et al. 2007. Research on distribution rule of shallow crustal geostress in China mainland. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 26(10): 2056-2062. Jing F, Sheng Q, Zhang Y H, et al. 2008. Statistical analysis of geostress distribution laws for different rocks. Rock and Soil Mechanics (in Chinese), 29(7): 1877-1883. Kan R J, Zhang S C, Yan F T, et al. 1977. Present tectonic stress field and its relation to the characteristics of recent tectonic activity in Southwestern China. Chinese J. Geophys. (in Chinese), 20(2): 96-109. Kumar A, Mitra S, Suresh G. 2015. Seismotectonics of the eastern Himalayan and Indo-Burman plate boundary systems. Tectonics, 34(11): 2279-2295. Li F Q, Qi Y N. 1988. Variation of crustal stresses with depth in China. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 7(4): 301-309. Li Y H, Wu Q J, An Z H, et al. 2006. The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions. Chinese J. Geophys. (in Chinese), 49(5): 1359-1368, doi: 10.3321/j.issn:0001-5733.2006.05.015. Liu M. 2010. Eocene Tibetan Plateau and the current stress field between two study (in Chinese). Beijing: China University of Geosciences (Beijing). Lu R Q, He D F, Xu X W, et al. 2016. Crustal-scale tectonic wedging in the central Longmen Shan: Constraints on the uplift mechanism in the southeastern margin of the Tibetan Plateau. J. Asian Earth Sci., 117: 73-81. Lu Z W, Gao R, Li Q S, et al. 2006. Deep geophysical probe and geodynamic study on the Qinghai-Tibet Plateau (1958—2004). Chinese J. Geophys. (in Chinese), 49(3): 753-770, doi: 10.3321/j.issn:0001-5733.2006.03.019. Ma R Y, Peng J B, Xi X W, et al. 2004. Mechanism of progressive uplift to Qinghai-Tibet Plateau. Advance in Earth Sciences (in Chinese), 19(S1): 41-45. Magni V, Allen M B, Van Hunen J, et al. 2016. Numerical models of Indian plate underthrusting after slab break-off: Controls on Himalayan-Tibetan tectonics. EGU General Assembly Conference.Abstracts,18:1938. Mao L G, Xiao A C, Zhang H W, et al. 2016. Structural deformation pattern within the NW Qaidam basin in the Cenozoic era and its tectonic implications. Tectonophysics, 687: 78-93. Mi Q. 2015. Numerical simulation of crustal stress field at the southeast margin of the Tibetan Plateau (in Chinese). University of Chinese Academy of Sciences. Shi F, He H L, Densmore A L, et al. 2016. Active tectonics of the Ganzi-Yushu fault in the Southeastern Tibetan Plateau. Tectonophysics, 676: 112-124. Shi Y L, Dong P Y, Zhang H. 2015. One hundred earthquake sequences of Tibetan plateau and dynamics simulation for future trend of seismic activity.//2015 Chinese Earth Science Union Academic Essays (No.11). Shi Y T. 2014. A preliminary study on the numerical simulation of features of the seismic anisotropy and dielectric anisotropy in the southern section of north-south seismic belt (in Chinese). Beijing: China Earthquake Administration. Sternai P, Avouac J P, Jolivet L, et al. 2016. On the influence of the asthenospheric flow on the tectonics and topography at a collision-subduction transition zones: Comparison with the eastern Tibetan margin. J. Geodynam., 100: 184-197. Sun C Q, Yan C H, Wu X P, et al. 2014. The effect of tidal triggering on seismic fault in eastern Tibetan plateau and its neighboring areas. Chinese J. Geophys. (in Chinese), 57(7): 2054-2064, doi: 10.6038/cjg20140703. Tapponnier P, Molnar P. 1977. Active faulting and tectonics in China. J. Geophys. Res. Atmos., 82: 2905-2930. Wang Y H, Cui X F, Hu X P, et al. 2012. Study on the stress state in upper crust of China mainland based on in-situ stress measurements. Chinese J. Geophys. (in Chinese), 55(9): 3016-3027, doi: 10.6038/j.issn.0001-5733.2012.09.020. Wei X W. 2006. The study of movement of the Qinghai-Tibet Plateau and the current tectonic stress field and its numerical simulation (in Chinese). Beijing: China University of Geosciences (Beijing). Xiao Z. 2015. Monitoring dynamic variations of underground media by repeating earthquakes and coda wave interferometry-application in the vicinity of Tibet Plateau (in Chinese). Institute of Earthquake Science, China Earthquake Administration. Xie F R, Cui X F, Zhao J T, et al. 2004. Regional division of the recent tectonic stress field in China and adjacent areas. Chinese J. Geophys. (in Chinese), 47(4): 654-662, doi: 10.3321/j.issn:0001-5733.2004.04.016. Xu J R, Zhao Z X. 2006. Characteristics of the regional stress field and tectonic movement on the Qinghai-Tibet Plateau and in its surrounding areas. Geology in China (in Chinese), 33(2): 275-285. Xu J R, Zhao Z X. 2016. Extensional seismotectonic motion and its dynamics in the eastern margin of the Tibetan Plateau and its surroundings. Journal of Geology & Geophysics, 5: 234-241. Xu Z H, Wang S Y, Huang Y R, et al. 1989. The tectonic stress field of Chinese continent deduced from a great number of earthquake. Chinese J. Geophys. (in Chinese), 32(6): 636-647. Xu Z H, Shi Y L. 2003. Lithospheric structure and continental geodynamics. Acta Seismologica Sinica. (in Chinese), 25(5): 512-527. Yang B C, Qiu L. 2009. The Review of in-situ stress of rock mass and its measurement method. Science and Technology Information, (6). 59-60:57. Yang S X, Yao R, Cui X F, et al. 2012. Analysis of the characteristics of measured stress in Chinese mainland and its active blocks and North-South seismic belt. Chinese J. Geophys. (in Chinese), 55(12): 4207-4217, doi: 10.6038/j.issn.0001-5733.2012.12.032. Yang S X. 2013. Study on the distribution characteristics of crustal stress field in Chinese mainland (in Chinese). Beijing: Beijing Jiaotong University. Yang S X, Huang L Y, Xie F R, et al. 2014. Quantitative analysis of the shallow crustal tectonic stress field in China mainland based on in situ stress data. J. Asian Earth Sci., 85: 154-162. Yao R, Yang S X, Lu Y Z, et al. 2010. Characteristics of tectonic stress in the east of Tibetan Plateau and its neighboring region inferred from in-situ stress measurement.//Xue, Fu R. Rock Stress and Earthquakes. London: CRC Press, 687-693. Ye Z, Li Q S, Gao R, et al. 2016. Anisotropic regime across northeastern Tibet and its geodynamic implications. Tectonophysics, 671: 1-8. Ye Z. 2016. A geodynamic study for the deep structure and plateau growth in northeastern Tibet (in Chinese). Beijing: Chinese Academy of Geological Sciences. Zang A, Stephansson O. 2010. Stress Field of the Earth's Crust. Netherlands: Springer, 63-65. Zeng Q. S. 1989. Present state of stress of crust in China. Bulletin of the Geomechanics (in Chinese), (1): 197-207. Zhang D J. 2006. The study on stress and strain analysis of crustal deformation and tectonic activity at the northeast edge of Qinghai-Tibetan (in Chinese). Xi'an: Chang'an University. Zhang D N, Yuan S Y, Shen Z K. 2007. Numerical simulation of the recent crust movement and the fault activities in Tibetan Plateau. Chinese J. Geophys. (in Chinese), 50(1): 153-162, doi: 10.3321/j.issn:0001-5733.2007.01.022. Zhang H. 2007. Study on characteristics of regional stress field in northeastern margin of the qinghai-tibet plateau based on the focal mechanism solutions of small earthquakes [Master thesis] (in Chinese). Lanzhou: Lanzhou Institute of Seismology. Zhang P Z, Deng Q D, Zhang G M, et al. 2003. Active tectonic blocks and strong earthquakes in the continent of China. Science in China (Series D), 46(S3): 13-24. Zhang X L, Jiang Z S, Wang S X, et al. 2004. Recent horizontal movement and seismogenic features of northeastern margin of Qinghai-Tibet block. Journal of Geodesy and Geodynamics (in Chinese), 24(4): 76-81. Zhang Y L, Li B Y, Zheng D. 2002. A discussion on the boundary and area of the Tibetan Plateau in China. Geophysical Research (in Chinese), 21(1): 1-8. Zhao D A, Chen Z M, Cai X L, et al. 2007. Analysis of distribution rule of geostress in China. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 26(6): 1265-1271. Zhao W J, Kumar P, Mechie J, et al. 2011. Tibetan plate overriding the Asian plate in central and northern Tibet. Nat. Geosci., 4(12): 870-873. Zheng Y. 2005. Dynamic simulation of lithospheric evolution from the Tibetan Plateau and China mainland (in Chinese). Hefei: University of Science and Technology of China. Zhu D C, Chung S L, Niu Y. 2016. Recent advances on the tectonic and magmatic evolution of the greater Tibetan Plateau: A special issue in honor of Prof. Guitang Pan. Lithos, 245: 1-6. Zhu H C, Tao Z Y. 1994. Geostress distributions in different rocks. Acta Seismologic Sinica (in Chinese), 16(1): 49-63. Zoback M L, Zoback M D, Adams J, et al. 1989. Global patterns of tectonic stress. Nature, 341(6240): 291-298. Zuza A V, Yin A. 2016. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the cenozoic tectonic development of northern Tibet. Tectonophysics, 677-678: 227-240. 蔡美峰. 2000. 地应力测量原理和技术. 科学出版社, 200-270. 陈顺云, 马瑾, 刘培洵等. 2014. 利用卫星遥感热场信息探索现今构造活动: 以汶川地震为例. 地震地质, 36(3): 775-793. 邓起东, 张裕明, 许桂林等. 1979. 中国构造应力场特征及其与板块运动的关系. 地震地质, 1(1): 11-22. 葛伟鹏, 袁道阳, 邵延秀等. 2015. 青藏高原西北部区域地壳形变、构造地貌与孕震构造模型研究——以2008年与2014年新疆于田7.3级地震为例. 地震工程学报, 37(3): 710-723. 葛肖虹. 2010. 我国南北地震构造带的由来.// 2010年全国岩石学与地球动力学研讨会论文集. 北京, 448-449. 郭桂红, 张智, 程建武等. 2015. 青藏高原东北缘地壳各向异性的构造含义. 地球物理学报, 58(11): 4092-4105, doi: 10.6038/cjg20151117. 郭怀志, 马启超, 薛玺成等. 1983. 岩体初始应力场的分析方法. 岩土工程学报, 5(3): 64-75. 郭祥云, 陈学忠, 王生文等. 2014. 川滇地区中小地震震源机制解及构造应力场的研究. 地震工程学报, 36(3): 599-607. 洪磊. 2016. 青藏高原东北缘现代构造应力场数值模拟. 四川地震, (1): 30-37. 景锋, 盛谦, 张勇慧等. 2007. 中国大陆浅层地壳实测地应力分布规律研究. 岩石力学与工程学报, 26(10): 2056-2062. 景锋, 盛谦, 张勇慧等. 2008. 不同地质成因岩石地应力分布规律的统计分析. 岩土力学, 29(7): 1877-1883. 阚荣举, 张四昌, 晏凤桐等. 1977. 我国西南地区现代构造应力场与现代构造活动特征的探讨. 地球物理学报, 20(2): 96-109. 李方全, 祁英男. 1988. 地壳应力随深度的变化规律. 岩石力学与工程学报, 7(4): 301-309. 李永华, 吴庆举, 安张辉等. 2006. 青藏高原东北缘地壳S波速度结构与泊松比及其意义. 地球物理学报, 49(5): 1359-1368, doi: 10.3321/j.issn:0001-5733.2006.05.015. 刘鸣. 2010. 西藏高原始新世与现今两期应力场的对比研究. 北京: 中国地质大学(北京). 卢占武, 高锐, 李秋生等. 2006. 中国青藏高原深部地球物理探测与地球动力学研究(1958—2004). 地球物理学报, 49(3): 753-770, doi: 10.3321/j.issn:0001-5733.2006.03.019. 马润勇, 彭建兵, 席先武等. 2004. 青藏高原的递进式隆升机制. 地球科学进展, 19(Sl): 41-45. 米琦. 2015. 青藏高原东南缘地壳应力场特征研究. 北京: 中国科学院大学. 石耀霖, 董培育, 张怀, 等. 2015. 青藏高原百年大地震序列和未来地震活动趋势的动力学模拟.//2015中国地球科学联合学术年会论文集(十一). 石玉涛. 2014. 南北地震带南段地震各向异性与介质各向异性特征数值模拟初步研究. 北京: 中国地震局地球物理研究所. 孙长青, 阎春恒, 吴小平等. 2014. 青藏高原东部及邻区地震断层面上的潮汐应力触发效应. 地球物理学报, 57(7): 2054-2064, doi: 10.6038/cjg20140703. 王艳华, 崔效锋, 胡幸平等. 2012. 基于原地应力测量数据的中国大陆地壳上部应力状态研究. 地球物理学报, 55(9): 3016-3027, doi: 10.6038/j.issn.0001-5733.2012.09.020. 尉晓玮. 2006. 青藏高原运动与现今构造应力场研究及数值模拟. 北京: 中国地质大学(北京). 82. 肖卓. 2015. 利用重复地震和尾波干涉技术监测地壳介质动态变化——以青藏高原周缘为例. 北京: 中国地震局地震预测研究所. 谢富仁, 崔效锋, 赵建涛等. 2004. 中国大陆及邻区现代构造应力场分区. 地球物理学报, 47(4): 654-662, doi: 10.3321/j.issn:0001-5733.2004.04.016. 徐纪人, 赵志新. 2006. 青藏高原及其周围地区区域应力场与构造运动特征. 中国地质, 33(2): 275-285. 许忠淮, 汪素云, 黄雨蕊等. 1989. 由大量的地震资料推断的我国大陆构造应力场. 地球物理学报, 32(6): 636-647. 许忠淮, 石耀霖. 2003. 岩石圈结构与大陆动力学. 地震学报, 25(5): 512-527. 杨保存, 邱林. 2009. 岩体地应力及其测量方法综述. 科技信息, (6): 59-60, 57. 杨树新, 姚瑞, 崔效锋等. 2012. 中国大陆与各活动地块、南北地震带实测应力特征分析. 地球物理学报, 55(12): 4207-4217, doi: 10.6038/j.issn.0001-5733.2012.12.032. 杨树新. 2013. 中国陆域地壳应力场分布特征研究. 北京: 北京交通大学. 叶卓. 2016. 青藏高原东北缘深部结构及高原扩展之地球动力学研究. 北京: 中国地质科学院. 曾秋生. 1989. 中国现今地壳应力状态. 地质力学学报, (1): 197-207. 张冬菊. 2006. 青藏东北缘地壳形变应力应变场分析与构造活动性 研究. 西安: 长安大学. 张东宁, 袁松涌, 沈正康. 2007. 青藏高原现代地壳运动与活动断裂带关系的模拟实验. 地球物理学报, 50(1): 153-162, doi: 10.3321/j.issn:0001-5733.2007.01.022. 张辉. 2007. 青藏高原东北缘基于小震震源机制解的区域应力场特征研究. 兰州: 中国地震局兰州地震研究所. 张培震, 邓起东, 张国民等. 2003. 中国大陆的强震活动与活动地块. 中国科学: 地球科学, 33(S1): 12-20 张晓亮, 江在森, 王双绪, 等. 2004. 青藏块体东北缘地壳运动与孕震特征. 大地测量与地球动力学, 24(4): 76-81. 张镱锂, 李炳元, 郑度. 2002. 论青藏高原范围与面积. 地理研究, 21(1): 1-8. 赵德安, 陈志敏, 蔡小林, 等. 2007. 中国地应力场分布规律统计分析. 岩石力学与工程学报, 26(6): 1265-1271. 郑勇. 2005. 青藏高原及中国地区大陆地壳岩石层变形演化动力学数值模拟. 合肥: 中国科学技术大学. 朱焕春, 陶振宇. 1994. 不同岩石中地应力分布. 地震学报, 16(1): 49-63.