YANG Fan,
XU Hou-Ze,
ZHONG Min et al
.2017.GRACE global temporal gravity recovery through the radial basis function approach.Chinese Journal Of Geophysics,60(4): 1332-1346,doi: 10.6038/cjg20170409
GRACE global temporal gravity recovery through the radial basis function approach
YANG Fan1,2, XU Hou-Ze1,2, ZHONG Min2, WANG Chang-Qing2, ZHOU Ze-Bing1
1. Institute of Geophysics, Huazhong University of Science and Technology, Wuhan 430074, China; 2. State Key Laboratory of Geodesy and Earth's Geodynamics, Chinese Academy of Sciences, Wuhan 430077, China
Abstract:Unlike the classical SH (spherical harmonic) geopotential representation employed by most of GRACE data processing centers to recover temporal gravity fields, this study manages to retrieve temporal gravity signal by the regional geopotential representation RBF (radial basis function), which features to be highly spatially localized. RBF is known as a more appropriate base than the spherical harmonics, since it is easy to incorporate with regional geophysical a-priori information in regularization to model detailed gravity field accurately. As a trial of RBF implementation in global gravity recovery from GRACE observations, this study assumes RBF scaling factors rather than Stokes coefficients as the unknowns within the gravity inversion. In this way, we successfully generated the RBF-based unconstrained model (namely, Hust-IGG03) as well as its constrained version (namely, Hust-IGG04). By making comparisons among GFZ RL05a, Hust-IGG03 and Hust-IGG04 over 2009-2010, we found that: (1) the degree geoid heights as well as the spatial equivalent water heights of Hust-IGG03 agree with those of GFZ RL05a in each month, revealing that unconstrained RBF solution is comparable to SH solution without the concern of signal loss; (2) with an unit Tikhonov regularization matrix applied, Hust-IGG04 has evidently eliminated the striping error that can severely bias the true gravity signal, and Hust-IGG04 has a similar noise level as GFZ RL05a after Gauss filtering with radius of 400km. Therefore users don't necessarily carry out the post-processing filtering on Hust-IGG04 to suppress noise any more; (3) Hust-IGG04 retrieved the gravity signal in a higher resolution than the filtered GFZ RL05a product, on both of annual amplitude map and trend map during the period of 2009-2010, for instance Hust-IGG04 increased the ice-melting rate over southern Greenland by 24% with respect to the filtered GFZ RL05a product. Consequently, we suggest that RBF is not only able to detect comparable gravity signals as the classical SH method, but also achieve a higher signal resolution due to its feasibility of introducing a-priori information into regularization. We anticipate that RBF can better exploit current or future GRACE observations and thereby contributes to the refinement of the regional gravity modelling for China.
Antoni M. 2012. Nichtlineare Optimierung regionaler Gravitationsfeld modelle aus SST-Daten[Ph. D. thesis]. Germany:University of Stuttgart. Bentel K, Schmidt M, Gerlach C. 2013. Different radial basis functions and their applicability for regional gravity field representation on the sphere. GEM-International Journal on Geomathematics, 4(1):67-96. Bettadpur S. 2012. Insights into the earth system mass variability from CSR-RL05 grace gravity fields.//EGU General Assembly Conference Abstracts. Vienna, Austria, 6409. Case K, Kruizinga G, Wu S. 2002. Grace level 1b data product user handbook. JPL Publication D-22027. Chambers D P, Wahr J, Nerem R S. 2004. Preliminary observations of global ocean mass variations with GRACE. Geophysical Research Letters, 31(13):L13310. Chambodut A, Panet I, Mandea M, et al. 2005. Wavelet frames:an alternative to spherical harmonic representation of potential fields. Geophysical Journal International, 163(3):875-899. Chen Q J, Shen Y Z, Chen W, et al. 2015a. A modified acceleration-based monthly gravity field solution from GRACE data. Geophysical Journal International, 202(2):1190-1206. Chen Q J, Shen Y Z, Zhang X F, et al. 2015b. Monthly gravity field models derived from GRACE Level 1B data using a modified short-arc approach. Journal of Geophysical Research:Solid Earth, 120(3):1804-1819. Cheng M K, Tapley B D. 2004. Variations in the earth's oblateness during the past 28 years. Journal of Geophysical Research:Solid Earth, 109(B9):B09402. Dahle C, Flechtner F, Gruber C, et al. 2014. GFZ RL05:An improved time-series of monthly Grace gravity field solutions.//Observation of the System Earth from Space-CHAMP, GRACE, GOCE and future missions. Berlin Heidelberg:Springer, 29-39. Eicker A. 2008. Gravity field refinement by radial basis functions from in-situ satellite data[Ph. D. thesis]. Germany:University of Bonn. Flechtner F, Dobslaw H, Fagiolini E. 2013. AOD1b product description document for product release 05. GFZ German Research Centre for Geosciences. Forootan E, Didova O, Schumacher M, et al. 2014. Comparisons of atmospheric mass variations derived from ECMWF reanalysis and operational fields, over 2003-2011. Journal of Geodesy, 88(5):503-514. Han S C, Simons F J. 2008. Spatiospectral localization of global geopotential fields from the gravity recovery and climate experiment (GRACE) reveals the coseismic gravity change owing to the 2004 Sumatra-Andaman earthquake. Journal of Geophysical Research:Solid Earth, 113(B1):B01405. Harig C, Simons F J. 2012. Mapping Greenland's mass loss in space and time. Proceedings of the National Academy of Sciences of the United States of America, 109(49):19934-19937. Klees R, Tenzer R, Prutkin I, et al. 2008. A data-driven approach to local gravity field modelling using spherical radial basis functions. Journal of Geodesy, 82(8):457-471. Kusche J, Klees R. 2002. Regularization of gravity field estimation from satellite gravity gradients. Journal of Geodesy, 76(6-7):359-368. Kusche J, Schmidt R, Petrovic S, et al. 2009. Decorrelated grace time-variable gravity solutions by GFZ, and their validation using a hydrological model. Journal of Geodesy, 83(10):903-913. Luthcke S B, Sabaka T J, Loomis B D, et al. 2013. Antarctica, Greenland and gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. Journal of Glaciology, 59(216):613-631. Moritz H. 1980. Advanced physical geodesy. Karlsruhe:Wichmann, Abacus Press. Naeimi M. 2013. Inversion of satellite gravity data using spherical radial base functions[Ph. D. thesis]. Fachrichtung Geodasie und Geoinformatik. Panet I, Kuroishi Y, Holschneider M. 2011. Wavelet modelling of the gravity field by domain decomposition methods:an example over Japan. Geophysical Journal International, 184(1):203-219. Petit G, Luzum B. 2010. IERS conventions (2010). Technical report, DTIC Document. Ran J J, Xu H Z, Zhong M, et al. 2014. Global temporal gravity filed recovery using GRACE data. Chinese J. Geophys. (in Chinese), 57(4):1032-1040, doi:10.6038/cjg20140402. Richey A S, Thomas B F, Lo M H, et al. 2015. Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7):5217-5238. Ries J C, Bettadpur S, Poole S, et al. 2011. Mean background gravity fields for grace processing.//GRACE Science Team Meeting. Austin, TX. Rieser D, Mayer-Gürr T, Savcenko R, et al. 2012. The ocean tide model EOT11a in spherical harmonics representation. URL:https://www.tugraz.at/fileadmin/user_upload/Institute/IFG/satgeo/pdf/TN_EOT11a.pdf. Rowlands D D, Luthcke S B, McCarthy J J, et al. 2010. Global mass flux solutions from grace:a comparison of parameter estimation strategies:mass concentrations versus stokes coefficients. Journal of Geophysical Research:Solid Earth, 115(B1):B01403. Sadourny R, Arakawa A, Mintz Y. 1968. Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere. Monthly Weather Review, 96(6):351-356. Save H V. 2009. Using regularization for error reduction in GRACE gravity estimation[Ph. D. thesis]. USA:The University of Texas at Austin. Schmidt M, Fengler M, Mayer-Gürr T, et al. 2007. Regional gravity modeling in terms of spherical base functions. Journal of Geodesy, 81(1):17-38. Swenson S, Chambers D, Wahr J. 2008. Estimating geocenter variations from a combination of GRACE and ocean model output. Journal of Geophysical Research:Solid Earth, 113(B8):B08410. Tapley B D, Bettadpur S, Watkins M, et al. 2004. The gravity recovery and climate experiment:Mission overview and early results. Geophysical Research Letters, 31(9):L09607. Tikhonov A N, Arsenin V Y. 1977. Methods for Solving Ill-Posed Problems. New York:John Wiley and Sons, Inc. Tregoning P, McClusky S, Van Dijk A, et al. 2012. Assessment of GRACE satellites for groundwater estimation in Australia. Canberra:National Water Commission, 82. Velicogna I, Wahr J. 2013. Time-variable gravity observations of ice sheet mass balance:Precision and limitations of the grace satellite data. Geophysical Research Letters, 40(12):3055-3063. Wahr J, Swenson S, Zlotnicki V, et al. 2004. Time-variable gravity from Grace:First results. Geophysical Research Letters, 31(11):L11501. Wang C Q, Xu H Z, Zhong M, et al. 2015. An investigation on GRACE temporal gravity field recovery using the dynamic approach. Chinese J. Geophys. (in Chinese), 58(3):756-766, doi:10.6038/cjg20150306. Watkins M M, Yuan D N. 2012. JPL level-2 processing standards document for level-2 product release 05. Watkins M M, Wiese D N, Yuan D N, et al. 2015. Improved methods for observing earth's time variable mass distribution with Grace using spherical cap mascons. Journal of Geophysical Research:Solid Earth, 120(4):2648-2671. Weigelt M, Keller W, Antoni M. 2012. On the comparison of radial base functions and single layer density representations in local gravity field modelling from simulated satellite observations.//VⅡ Hotine-Marussi Symposium on Mathematical Geodesy. Berlin, Heidelberg:Springer, 199-204. Weightman J A. 1967. Gravity, geodesy and artificial satellites. A unified analytical approach.//Veis G. The Use of Artificial Satellites for Geodesy, Volume 2. Proceedings of the International Symposium. Athens, Greece:National Technical University of Athens. Wieczorek M A, Simons F J. 2005. Localized spectral analysis on the sphere. Geophysical Journal International, 162(3):655-675. Wittwer T B. 2009. Regional gravity field modelling with radial basis functions[Ph. D. thesis]. Delft:Delft University of Technology. Yang F, Wang C Q, Xu H Z, et al. 2017. Towards a more accurate temporal gravity model from GRACE observations through the kinematic orbits. Chinese J. Geophys. (in Chinese), 60(1):37-49, doi:10.6038/cjg20170104. Younis G. 2013. Regional gravity field modeling with adjusted spherical cap harmonics in an integrated approach[Ph. D. thesis]. Darmstadt:Technische Universität Darmstadt. 冉将军, 许厚泽, 钟敏等. 2014. 利用GRACE重力卫星观测数据反演全球时变地球重力场模型. 地球物理学报, 57(4):1032-1040, doi:10.6038/cjg20140402. 王长青, 许厚泽, 钟敏等. 2015. 利用动力学方法解算 GRACE 时变重力场研究. 地球物理学报, 58(3):756-766, doi:10.6038/cjg20150306. 杨帆, 王长青, 许厚泽等. 2017. 利用运动学轨道提高GRACE时变重力场解算. 地球物理学报, 60(1):37-49, doi:10.6038/cjg20170104.