ZHANG Lin,
BA Jing,
YIN Wen et al
.2017.Seismic wave propagation equations of conglomerate reservoirs: A triple-porosity structure model.Chinese Journal Of Geophysics,60(3): 1073-1087,doi: 10.6038/cjg20170320
Seismic wave propagation equations of conglomerate reservoirs: A triple-porosity structure model
ZHANG Lin1,2, BA Jing1, YIN Wen2, SUN Wei-Tao3, TANG Jian-Yun2
1. School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China; 2. China University of Petroleum(Beijing), Xingjiang Karamay 834000, China; 3. Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100083, China
Abstract:According to the triple-porosity structure characteristics of conglomerate, sand and mud composite in conglomerate reservoirs, this paper analyzes the mechanisms of pore fluid flow among the conglomerate, sandstone and mudstone pore systems. By combining the static constitutive equations of the conglomerate skeleton and the dynamic motion equations of pore fluid, we propose the theoretical equations of elastic wave propagation in complex conglomerate reservoirs. Employing the measured conglomerate reservoir parameters, the rationality of the theoretical equations in this paper is verified by the analysis and comparison with the double-porosity media theory in numerical examples. Based on the triple-porosity model, we analyze the wave propagation characteristics of P-waves in different reservoir conditions. Results show that with the increasing fluid viscosity, the two wave attenuation peaks generated by the local flow between conglomerate and sandstone and sandstone and mudstone pore systems shift to the low-frequency end in the attenuation-frequency coordinate system, and the attenuation peak caused by Biot global flow shifts to the high-frequency end. Changes in the size of inclusions and the permeability of host media mainly affect the P-wave velocity and dispersion curves shifting left/right along the frequency axis, and will not affect the amplitude of wave velocity in its low/high frequency limits. Variations in the volume ratio of inclusions and porosity change the elastic and density parameters of rock skeleton, which will not only affect P-wave velocity dispersion curves shifting along the frequency axis, but also affect the amplitude of wave velocity limits. In the attenuation curves predicted by the "mudstone embedded in sandstone embedded in the conglomerate" triple-porosity model, the first attenuation peak at the low frequency end is mainly caused by the local fluid flow between the conglomerate and sandstone pore systems, the second attenuation peak at the intermediate frequencies is mainly caused by the local fluid flow between the sandstone and mudstone systems, and the third attenuation peak at the ultrasonic frequencies is mainly caused by the Biot global flow. Analysis on the characteristics of slow P-wave propagation also shows that the dissipation caused by the global fluid flow in the sandstone system (which has a higher local porosity) is obviously stronger than that in the conglomerate or mudstone system.
Ba J, Carcione J M, Nie J X. 2011. Biot-Rayleigh theory of wave propagation in double-porosity media. J. Geophys. Res., 116(B6):B06202, doi:10.1029/2010JB008185. Ba J, Carcione J M, Cao H, et al. 2012. Velocity dispersion and attenuation of P waves in partially-saturated rocks:Wave propagation equations in double-porosity medium. Chinese J. Geophys. (in Chinese), 55(1):219-231, doi:10.6038/j.issn.0001-5733.2012.01.021. Ba J. 2013. Progress and Review of Rock Physics (in Chinese). Beijing:Tsinghua University Press. Ba J, Yan X F, Chen Z Y, et al. 2013. Rock physics model and gas saturation inversion for heterogeneous gas reservoirs. Chinese J. Geophys. (in Chinese), 56(5):1696-1706, doi:10.6038/cjg20130527. Ba J, Zhang L, Sun W T, et al. 2014. Velocity field of wave-induced local fluid flow in double-porosity media. Science China Physics, Mechanics & Astronomy, 57(6):1020-1030. Ba J, Carcione J M, Sun W T. 2015. Seismic attenuation due to heterogeneities of rock fabric and fluid distribution. Geophysical Journal International, 202(3):1843-1847. Berryman J G, Milton G W. 1991. Exact results for generalized Gassmann's equations in composite porous media with two constituents. Geophysics, 56(12):1950-1960. Berryman J G, Wang H F. 2000. Elastic wave propagation and attenuation in a double-porosity dual-permeability medium. International Journal of Rock Mechanics and Mining Sciences, 37(1-2):63-78. Biot M A. 1956. Theory of propagation of elastic waves in a fluid-saturated porous solid:I. Low-frequency range. J. Acoust. Soc. Am., 28(2):168-178. Biot M A. 1962. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys., 33(4):1482-1498. Brajanovski M, Müller T M, Parra J O. 2010. A model for strong attenuation and dispersion of seismic P-waves in a partially saturated fractured reservoir. Science China Physics, Mechanics & Astronomy, 53(8):1383-1387. Cadoret T, Mavko G, Zinszner B. 1998. Fluid distribution effect on sonic attenuation in partially saturated limestones. Geophysics, 63(1):154-160. Deng J X, Zhou H, Wang H, et al. 2015. The influence of pore structure in reservoir sandstone on dispersion properties of elastic waves. Chinese J. Geophys. (in Chinese), 58(9):3389-3400, doi:10.6038/cjg20150931. Dvorkin J, Nur A. 1993. Dynamic poroelasticity:A unified model with the squirt and the Biot mechanisms. Geophysics, 58(4):524-533. Gassmann F. 1951. Uber die elastizitat poroser medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96:1-23. Hashin Z, Strikman S. 1963. A variational approach to the elastic behaviour of multiphase materials. Mech.Phys.Solids,11(2):127-140. Johnson D L. 1986. Recent developments in the acoustic properties of porous media.//Sette D. Frontiers in Physical Acoustics XCIII. New York:North Holland, 255-290. Liu J, Ma J W, Yang H Z. 2009. Research on dispersion and attenuation of P wave in periodic layered-model with patchy saturation. Chinese J. Geophys. (in Chinese), 52(11):2879-2885, doi:10.3969/j.issn.0001-5733.2009.11.023. Liu J K. 1983. An investigation on structure model of conglomeratic reservoir and its evaluation. Petroleum Exploration and Development (in Chinese), (2):45-56. Luo M G. 1991. Quantitative models for pore structures of clastic sedimentary rocks. Acta Petrolei Sinica (in Chinese), 12(4):27-38, 145. Müller T M, Gurevich B, Lebedev M. 2010. Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks-A review. Geophysics, 75(5):75A147-75A164. Ma L J, He X Z, Sun M J, et al. 2002. Characterization of glutenite reservoirs in the northern Dongying sag. Geophysical Prospecting for Petroleum (in Chinese), 41(3):354-358. Pride S R, Berryman J G, Harris J M. 2004. Seismic attenuation due to wave-induced flow. J. Geophys. Res., 109(B1):B01201, doi:10.1029/2003JB002639. Qu W G. 2010. Microcosmic characteristics of sandy conglomerate reservoir in Wangzhuang area. Lithologic Reservoirs (in Chinese), 22(S1):18-21. Rayleigh L. 1917. On the pressure developed in a liquid during the collapse of a spherical cavity. Philos. Mag. Ser., 34(200):94-98. Sun W T, Liu J W, Ba J, et al. 2015. Theoretical models of elastic wave dispersion-attenuation in porous medium. Progress in Geophysics (in Chinese), 30(2):586-600, doi:10.6038/pg20150215. Tang X M. 2011. A unified theory for elastic wave propagation through porous media containing cracks-An extension of Biot's poroelastic wave theory. Science China:Earth Sciences(in Chinese), 41(6):784-795. Tang X M, Chen X L, Xu X K. 2012. A cracked porous medium elastic wave theory and its application to interpreting acoustic data from tight formations. Geophysics, 77(6):D245-D252. Toms-Stewart J, Müller T M, Gurevich B, et al. 2009. Statistical characterization of gas-patch distributions in partially saturated rocks. Geophysics, 74(2):WA51-WA64. Wu J L, Wu G C, Zong Z Y. 2015. Attenuation of P waves in a porous medium containing various cracks. Chinese J. Geophys. (in Chinese), 58(4):1378-1389, doi:10.6038/cjg20150424. Yin X Y, Zong Z Y, Wu G C. 2015. Research on seismic fluid identification driven by rock physics. Science China:Earth Sciences, 58(2):159-171. Zan L, Wang S H, Zhang Z H, et al. 2011. Research status of sandy conglomerates reservoir. Journal of Yangtze University (Natural Science Edition) (in Chinese), 8(3):63-66. Zhang S W. 2011. Study on the rock physics properties of glutenite reservoir about Dongying North Actic Region[Ph. D. thesis] (in Chinese). Qingdao:China University of Petroleum (Qingdao). 附中文参考文献 巴晶, Carcione J M, 曹宏等. 2012. 非饱和岩石中的纵波频散与衰减:双重孔隙介质波传播方程. 地球物理学报, 55(1):219-231, doi:10.6038/j.issn.0001-5733.2012.01.021. 巴晶. 2013. 岩石物理学进展与评述. 北京:清华大学出版社. 巴晶, 晏信飞, 陈志勇等. 2013. 非均质天然气藏的岩石物理模型及含气饱和度反演. 地球物理学报, 56(5):1696-1706, doi:10.6038/cjg20130527. 邓继新, 周浩, 王欢等. 2015. 基于储层砂岩微观孔隙结构特征的弹性波频散响应分析. 地球物理学报, 58(9):3389-3400, doi:10.6038/cjg20150931. 刘炯, 马坚伟, 杨慧珠. 2009. 周期成层Patchy模型中纵波的频散和衰减研究. 地球物理学报, 52(11):2879-2885, doi:10.3969/j.issn.0001-5733.2009.11.023. 刘敬奎. 1983. 砾岩储层结构模态及储层评价探讨. 石油勘探与开发, (2):45-56. 罗明高. 1991. 碎屑岩储层结构模态的定量模型. 石油学报, 12(4):27-38, 145. 马丽娟, 何新贞, 孙明江等. 2002. 东营凹陷北部砂砾岩储层描述方法. 石油物探, 41(3):354-358. 曲卫光. 2010. 王庄地区砂砾岩储层微观特征. 岩性油气藏, 22(S1):18-21. 孙卫涛, 刘嘉玮, 巴晶等. 2015. 孔隙介质弹性波频散-衰减理论模型. 地球物理学进展, 30(2):586-600, doi:10.6038/pg20150215. 唐晓明. 2011. 含孔隙、裂隙介质弹性波动的统一理论——Biot理论的推广. 中国科学:地球科学, 41(6):784-795. 吴建鲁, 吴国忱, 宗兆云. 2015. 含混合裂隙、孔隙介质的纵波衰减规律研究. 地球物理学报, 58(4):1378-1389, doi:10.6038/cjg20150424. 印兴耀, 宗兆云, 吴国忱. 2015. 岩石物理驱动下地震流体识别研究. 中国科学:地球科学, 45(1):8-21. 昝灵, 王顺华, 张枝焕等. 2011. 砂砾岩储层研究现状. 长江大学学报(自然科学版), 8(3):63-66. 张守伟. 2011. 东营北带砂砾岩储层岩石物理特征研究[博士论文]. 青岛:中国石油大学(青岛).