YOU Jin-Feng,
XING Li-Xin,
PAN Jun et al
.2016.Characteristics of spectral response of oil sand components and their significance.Chinese Journal Of Geophysics,59(8): 3068-3078,doi: 10.6038/cjg20160829
Characteristics of spectral response of oil sand components and their significance
YOU Jin-Feng1, XING Li-Xin1, PAN Jun1, SHAN Xuan-Long2, FAN Rui-Xue1
1. College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China;
2. College of Earth Sciences, Jilin University, Changchun 130061, China
Oil-bearing sands are a mixture of clay mineral,bitumen (an array of various hydrocarbon), quartz grains, water and minor accessory minerals. A number of analytical techniques have been applied to study the complex nature of such oil sands. The laboratory-derived reflectance spectra of oil sands show an abundance of diagnostic absorption features in the 350~2500 nm wavelength range. Discrete absorption bands due to clay mineral, ferrous mineral, carbonate and hydrocarbon appear at well-defined wavelengths. The phases are present in the oil sand, except quartz, which display distinct absorption bands that are potentially resolvable. The intensities and wavelength positions of spectra could provide information on the physical and chemical properties of various phases. The most prominent regions which are indicative of hydrocarbon absorption bands are near 1700 nm and between 2200 and 2600 nm, respectively. These spectral ranges are dominated by various C-H stretching overtones and combination bands. Absorption bands in the 2200 nm regions are most useful for identifying the presence and types of clay minerals with Al-OH. Based on the absorption spectra of physical response mechanism of the components of oil sands, the patterns of ASTER imagery anomalies extracted from the main alteration minerals were established by comparing the average absorption depth of the mineral groups. These patterns could be filtered to produce a lot of interference information and may more effectively indicate the distribution of oil sand compared with conventional tools with hydrocarbon microseepage of remote sensing. The correlation analysis was made to absorption depth of groups and porosity and permeability, then the relationship between the spectra of oil sands and reservoir quality from geological background environment was studied. The results show that the absorption depth of clay mineral group which characterizes clay mineral content is negatively correlated with poroperm values and absorption depth of hydrocarbon groups which characterizes petroliferous properties is positively related with poroperm values. This research proves that the field spectral characteristics of oil sand components may guide using the imagery data to detect the distribution of favorable areas for oil sands and provide an approach to in-depth study the petrophysical properties by establishing the relationship between the spectra of oil sands and poroperm values.
Beit ler B, Chan M A, Parry W T. 2003. Bleaching of Jurassic Navajo sandstone on Colorado Plateau Laramide highs:Evidence of exhumed hydrocarbon supergiants. Geology, 31(12):1041-1044.
Cloutis E A. 1989. Spectral reflectance properties of hydrocarbons:remote-sensing implications. Science, 245(4914):165-168.
Cloutis E A, Gaffey M J, Moslow T F. 1995. Characterization of minerals in oil sands by reflectance spectroscopy. Fuel, 74(6):874-879.
Desando M A, Lahajnar G, Ripmeester J A, et al. 1999. The low temperature oxidation of Athabasca oil sand asphaltene observed from 13C, 19F, and pulsed field gradient spin-echo proton n.m.r. spectra. Fuel, 78(1):31-45.
Eastwood J. 1993. Temperature-dependent propagation of P-and S-waves in Cold Lake oil sands:Comparison of theory and experiment. Geophysics, 58(6):863-872.
Feng J, Rivard B, Gallie A, et al. 2009. Feature selection and broad band bitumen content estimation of Athabasca oil sand from infrared reflectance spectra//First Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing, 2009. WHISPERS'09. Grenoble:IEEE, 1-5.
Flach P D. 1984. Oil sands geology:Athabasca deposit north[Ph. D. thesis]. Edmonton:Alberta Research Council.
Fu W J. 2000. Influence of clay minerals on sandstone reservoir properties. Journal of Palaeogeography (in Chinese), 2(3):59-68.
Gad S, Kusky T. 2007. ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research, 11(3):326-335.
Gürgey K. 2003. Correlation, alteration, and origin of hydrocarbons in the GCA, Bahar, and Gum Adasi fields, western South Caspian Basin:geochemical and multivariate statistical assessments. Marine and Petroleum Geology, 20(10):1119-1139.
Huang J Z, Ran L H. 1989. Bitumen and oil-gas exploration in simian "denying limestone" in Sichuan Basin. Acta Petrolei Sinica (in Chinese), 10(1):27-36.
Huang Z Q, Yao Z X, Cheng M H. 2014. Lithologic anomaly identification of hydrocarbon microseepages in Kelasu fold-and-thrust belt, West China using ASTER imagery//2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Quebec City, QC:IEEE, 863-866.
Hubbard B E, Crowley J K, Zimbelman D R. 2003. Comparative alteration mineral mapping using visible to shortwave infrared (0.4~2.4μm) Hyperion, ALI, and ASTER imagery. IEEE Transactions on Geoscience and Remote Sensing, 41(6):1401-1410.
Kühn F, Oppermann K, H rig B. 2004. Hydrocarbon index-an algorithm for hyperspectral detection of hydrocarbons. International Journal of Remote Sensing, 25(12):2467-2473.
Khan S D, Jacobson S. 2008. Remote sensing and geochemistry for detecting hydrocarbon microseepages. Geological Society of America Bulletin, 120(1-2):96-105.
Liu B, Guo X B, Huang Z L, et al. 2013. Discussion on prediction method for hydrocarbon resource potential of shale oil:Taking Lucaogou Formation shale oil of Malang sag as case. Journal of Central South University (Science and Technology) (in Chinese), 44(4):1472-1478.
Liu C, Zhang H L, Shen A J, et al. 2010. Geochemistry characteristicsand origin of the Devonian oil-sandstone in the northwest of Sichuan Basin. Acta Petrolei Sinica (in Chinese), 31(2):253-258.
Lyder D, Feng J, Rivard B, et al. 2010. Remote bitumen content estimation of Athabasca oil sand from hyperspectral infrared reflectance spectra using Gaussian singlets and derivative of Gaussian wavelets. Fuel, 89(3):760-767.
Ma D X, Du Z W, Zhang T, et al. 2013. Physical properties and controlling factors of reservoirs in the Z30 block in Sulige gas field. Journal of Shandong University of Science and Technology (Natural Science)(in Chinese), 32(5):68-76, 83.
Osacky M, Geramian M, Ivey D G, et al. 2013. Mineralogical and chemical composition of petrologic end members of Alberta oil sands. Fuel, 113:148-157.
Petrovic A, Khan S D, Chafetz H S. 2008. Remote detection and geochemical studies for finding hydrocarbon-induced alterations in Lisbon Valley, Utah. Marine and Petroleum Geology, 25(8):696-705.
Petrovic A, Khan S D, Thurmond A K. 2012. Integrated hyperspectral remote sensing, geochemical and isotopic studies for understandinghydrocarbon-induced rock alterations. Marine and Petroleum Geology, 35(1):292-308.
Rivard B, Lyder D, Feng J, et al. 2010. Bitumen content estimation of Athabasca oil sand from broad band infrared reflectance spectra. The Canadian Journal of Chemical Engineering, 88(5):830-838.
Rubinstein I, Strausz O P, Spyckerelle C, et al. 1977. The origin of the oil sand bitumens of Alberta:a chemical and a microbiological simulation study. Geochimica et Cosmochimica Acta, 41(9):1341-1353.
Salati S, van Ruitenbeek F J A, de Smeth J B, et al. 2014. Spectral and geochemical characterization of onshore hydrocarbon seep-induced alteration in the Dezful embayment, southwest Iran. AAPG Bulletin, 98(9):1837-1857.
Segal D B, Ruth M D, Merin I S. 1985. Remote detection of anomalous mineralogy associated with hydrocarbon production, Lisbon Valley, Utah. AAPG Bulletin-American Association of Petroleum Geologists, 69(2):305-306.
Shaw R C, Kratochvil B. 1990. Near-infrared diffuse reflectance analysis of Athabasca oil sand. Analytical Chemistry, 62(2):167-174.
Shi P L, Fu B H, Ninomiya Y. 2010. Detecting lithologic features from ASTER VNIR-SWIR multispectral data in the arid region:A case study in the eastern Kalpin uplift, southwest Tian Shan. Chinese Journal of Geology (in Chinese), 45(1):333-347.
Shi Y, Hou G T, Zhong S L, et al. 2012. Study on diagenesis of Lower Youshashan Formation of Wunan oil field in Qaidam Basin. Natural Gas Geoscience (in Chinese), 23(5):909-915.
Van der Meer F, Van Dijk P, Van Der Werff H, et al. 2002. Remote sensing and petroleum seepage:a review and case study. Terra Nova, 14(1):1-17.
Wan Y Q, Zhang F L, Yan Y Z. 2001. The analysis of mineral and rock's hyper-spectral library. Geo-Information Science (in Chinese), 3(3):54-58.
Wang J Y, Shu W P. 1996. Geochemical exploration, plant ash content, geobody short wave infrared spectrum from remote sensing test arer in northern XiZang (Tibet). Earth Science-Journal of China University of Geosciences (in Chinese), 21(2):215-220.
Wang Q B, Shan X L, Zhang C Y, et al. 2007. Geological characteristics and forming pattern of Sazhi oil sand in Chuxiong Basin. Global Geology (in Chinese), 26(1):52-57.
Wang W F, Xu H M, Lin C Y. 1993. Evaluation of the clay mineral assemblage and sensitivity of the reservoirs in the Zaobei oil field. Geological Review (in Chinese), 39(S1):29-34.
Wang X X. 1991. Characteristics of clay minerals and their effects on production capacity of the cretaceous sandstone reservoirs in Songliao Basin. Petroleum Exploration and Development (in Chinese), (1):48-55.
Wang Y P, Ding X, He Z C. 1993. The hydrocarbon microseepage alteration information and it's extraction mechanism. Remote Sensing of Environment (in Chinese), 8(4):292-299.
Wu C Y. 1992. Shortwave IR spectral scanning——a new aerial IR remote sensing method for oil and gas resources survey. Journal Infrared Millimeter and Waves (in Chines), 11(3):189-194.
Yang K, Yang B L. 1996. Effectiveness and application of airborne short-wave infrared split spectral remote sensing technique in direct search of oil-gas resources. Acta Mineralogica Sinica (in Chinese), 16(3):321-326.
Yu F S, Wang Y H, Li X L, et al. 2011. Deformation characteristics and genesis simulation of the Shizigou-Youshashan structural beltin Qaidamu Basin. Geotectonica et Metallogenia (in Chinese), 35(2):207-215.
Yuan H, Yin F P, Yang W, et al. 2010. An approach to distribution and genesis of Dolomitite of the Lower Permian Qixia Formation in Northwest Sichuan. Acta Geologica Sichuan (in Chinese), 30(4):386-389.
Zhang L L, Hao T Y, Huang X X, et al. 2010. Recognition of hydrocarbon-seepage-related magnetic anomalies in the North Yellow Sea basin. Chinese J. Geophys. (in Chinese), 53(6):1354-1365.
Zhu G H. 1985. Formation of low permeability sandbodies and secondary pore sandbodies in the upper Triassic Yanchang series of south-western Shan-Gan-Ning basin. Acta Sedimentologica Sinica (in Chinese), 3(2):1-17.
Zou C N, Yang Z, Zhang G S, et al. 2014. Conventional and unconventional petroleum "orderly accumulation":concept and practical significance. Petroleum Exploration and Development (in Chinese), 41(1):14-27.
Zou C N, Zhang G S, Yang Z, et al. 2013. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon:On unconventional petroleum geology. Petroleum Exploration and Development (in Chinese), 40(4):385-399.
伏万军. 2000. 粘土矿物成因及对砂岩储集性能的影响. 古地理学报, 2(3):59-68.
黄籍中, 冉隆辉. 1989. 四川盆地震旦系灯影灰岩黑色沥青与油气勘探. 石油学报, 10(1):27-36.
柳波, 郭小波, 黄志龙等. 2013. 页岩油资源潜力预测方法探讨:以三塘湖盆地马朗凹陷芦草沟组页岩油为例. 中南大学学报(自然科学版), 44(4):1472-1478.
刘春, 张惠良, 沈安江等. 2010. 川西北地区泥盆系油砂岩地球化学特征及成因. 石油学报, 31(2):253-258.
马东旭, 杜支文, 张涛等. 2013. 苏里格气田Z30区块储层物性特征及控制因素. 山东科技大学学报(自然科学版), 32(5):68-76, 83.
时丕龙, 付碧宏, 二宫芳树. 2010. 基于ASTER VNIR-SWIR多光谱遥感数据识别与提取干旱地区岩性信息——以西南天山柯坪隆起东部为例. 地质科学, 45(1):333-347.
石勇, 侯贵廷, 钟尚伦等. 2012. 柴达木盆地乌南油田下油砂山组成岩作用研究. 天然气地球科学, 23(5):909-915.
万余庆, 张凤丽, 闫永忠. 2001. 矿物岩石高光谱数据库分析. 地球信息科学, 3(3):54-58.
王津义, 舒文培. 1996. 藏北油气遥感-化探-植物灰分-地物短波红外细分光谱试验研究. 地球科学-中国地质大学学报, 21(2):215-220.
王清斌, 单玄龙, 臧春艳等. 2007. 楚雄盆地洒芷油砂地质特征及成藏模式. 世界地质, 26(1):52-57.
王伟锋, 徐怀民, 林承焰. 1993. 枣北油田储层粘土矿物组合与敏感性评价. 地质论评, 39(S1):29-34.
王行信. 1991. 松辽盆地白垩系砂岩储层的粘土矿物特征及其对油层产能的影响. 石油勘探与开发, (1):48-55.
王云鹏, 丁暄, 何在成. 1993. 江汉油田烃类微渗漏蚀变信息及提取机理. 环境遥感, 8(4):292-299.
吴常泳. 1992. 航空红外遥感油气资源新方法-短波红外分光谱扫描. 红外与毫米波学报, 11(3):189-194.
杨琨, 杨柏林. 1996. 航空短波红外分光谱遥感技术直接寻找油气藏的有效性及应用实例. 矿物学报, 16(3):321-326.
于福生, 王彦华, 李学良等. 2011. 柴达木盆地狮子沟-油砂山构造带变形特征及成因模拟. 大地构造与成矿学, 35(2):207-215.
袁浩, 尹富平, 杨巍等. 2010. 川西北地区下二叠统栖霞组白云岩分布与成因探讨. 四川地质学报, 30(4):386-389.
张丽莉, 郝天珧, 黄晓霞等. 2010. 北黄海盆地烃渗漏蚀变带"磁亮点"的识别研究. 地球物理学报, 53(6):1354-1365.
朱国华. 1985. 陕甘宁盆地西南部上三叠系延长统低渗透砂体和次生孔隙砂体的形成. 沉积学报, 3(2):1-17.
邹才能,杨智,张国生等. 2014. 常规-非常规油气"有序聚集"理论认识及实践意义. 石油勘探与开发, 41(1):14-27.
邹才能,张国生,杨智等. 2013. 非常规油气概念、特征、潜力及技术——兼论非常规油气地质学. 石油勘探与开发,40(4):385-399.