LI Han,
YAO ZhenXing
.2018.Microseismic focal mechanism inversion in frequency domain based on general dislocation point model.Chinese Journal Of Geophysics,61(3): 905-916,doi: 10.6038/cjg2018L0237
Microseismic focal mechanism inversion in frequency domain based on general dislocation point model
LI Han1,2,3, YAO ZhenXing2
1. Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 2. Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Fracture directionality, scale and stress state of hydraulic fracturing areas are extremely important for the exploration of unconventional oil and gas resources. These information can be obtained from the study of microseismic focal mechanisms. For microseismic events, double-couple or moment tensor models are usually used in focal mechanism inversion. In this study, a "Shear & Tensile" general dislocation point model is presented to describe the source of microearthquakes. Based on this model, we develop an approach to calculate microseismic focal mechanism using amplitude spectra fitting and simulated annealing technique in frequency domain. The new method takes account of full waveform information including phase and polarities of first P wave arrivals and can provide dislocation length along each direction as well as common source parameters (strike, dip and rake angles) in the study area. The synthetic tests on surface and borehole network and applications to real data show that our method is robust and efficient. We also find that shear and tensile dislocation lengths are independent of stress drop and can be used as new parameters for quantitative evaluation of hydraulic fracturing.
Baig A, Urbancic T. 2010. Microseismic moment tensors:A path to understanding frac growth. The Leading Edge, 29(3):320-324. Batchelor A S, Baria R, Hearn K. 1983. Monitoring the effects of hydraulic stimulation by microseismic event location:a case study.//53th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts. Brune J N. 1970. Tectonic stress and spectra of shear waves from earthquakes. Journal of Geophysical Research:Atmospheres, 75(26):4997-5009. Brune J N. 1971. Correction. Journal of Geophysical Research Atmospheres, 76(20):5002. Cesca S, Buforn E, Dahm T. 2006. Amplitude spectra moment tensor inversion of shallow earthquakes in Spain. Geophysical Journal International, 166(2):839-854. Cesca S, Heimann S, Stammler K, et al. 2010. Automated procedure for point and kinematic source inversion at regional distances. Journal of Geophysical Research:Solid Earth, 115(B6):B06304, doi:10.1029/2009JB006450. Cesca S, Heimann S, Dahm T. 2011. Rapid directivity detection by azimuthal amplitude spectra inversion. Journal of Seismology, 15(1):147-164. Dahm T, Manthei G, Eisenblätter J. 1999. Automated moment tensor inversion to estimate source mechanisms of hydraulically induced micro-seismicity in salt rock. Tectonophysics, 306(1):1-17. Dahm T, Horálek J, Šílený J. 2000. Comparison of absolute and relative moment tensor solutions for the January 1997 West Bohemia earthquake swarm. Studia Geophysica et Geodaetica, 44(2):233-250. Dreger D, Helmberger D. 1991. Source parameters of the Sierra Madre Earthquake from regional and local body waves. Geophysical Research Letters, 18(11):2015-2018. Fisher M K, Warpinski N R. 2012. Hydraulic fracture height growth:real data. Spe Production & Operations, 27(1):8-19. Hanks T C, Wyss M. 1972. The use of body-wave spectra in the determination of seismic-source parameters. Bulletin of the Seismological Society of America, 62(2):561-589. Hao J L, Yao Z X. 2012a. Determination of regional earthquake source parameters in wavelet domain. Science China Earth Sciences, 55(2):296-305, doi:10.1007/s11430-011-4341-8. Hao J L, Yao Z X. 2012b. The coseismic displacement, strain and stress in the layered elastic model. Chinese Journal Geophysics (in Chinese), 55(5):1682-1694, doi:10.6038/j.issn.0001-5733.2012.05.025. Hardebeck J L. 2002. A new method for determining first-motion focal mechanisms. Bulletin of the Seismological Society of America, 92(6):2264-2276. Hardebeck J L, Shearer P M. 2003. Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bulletin of the Seismological Society of America, 93(6):2434-2444. He Y M, Wang W M, Yao Z X. 2003. Static deformation due to shear and tensile faults in a layered half-space. Bulletin of the Seismological Society of America, 93(5):2253-2263. Ji C, Wald D J, Helmberger D V. 2002. Source description of the 1999 Hector Mine, California, Earthquake, Part I:wavelet domain inversion Theory and Resolution Analysis. Bulletin of the Seismological Society of America, 92(4):1192-1207. Julià J, Nyblade A A, Durrheim R, et al. 2009. Source mechanisms of mine-related seismicity, Savuka mine, South Africa. Bulletin of the Seismological Society of America, 99(5):2801-2814. Kanamori H. 1977. The energy release in great earthquakes. Journal of Geophysical Research, 82(20):2981-2987. Kirkpatrick S, Gelatt C D Jr, Vecchi M P. 1983. Optimization by simulated annealing. Science, 220(4598):671-680. Kuang W H, Zoback M, Zhang J. 2016. Estimating geomechanical parameters from microseismic plane focal mechanisms recorded during multistage hydraulic fracturing. Geophysics, 82(1):KS1-KS11. Li J L, Zhang H J, Kuleli H S, et al. 2011. Focal mechanism determination using high frequency waveform matching and its application to small magnitude induced earthquakes. Geophysical Journal International, 184(3):1261-1274. Madariaga R. 1976. Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3):639-666. Maxwell S C, Urbancic T I. 2001. The role of passive microseismic monitoring in the instrumented oil field. The Leading Edge, 20(6):636-639. Maxwell S C, Rutledge J, Jones R, et al. 2010. Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics, 75(5):75A129-75A137. Nolen-Hoeksema R C, Ruff L J. 2001. Moment tensor inversion of microseisms from the B-sand propped hydrofracture, M-site, Colorado. Tectonophysics, 336(1-4):163-181. Phillips W S, Fairbanks T D, Rutledge J T, et al. 1998. Induced microearthquake patterns and oil-producing fracture systems in the Austin chalk. Tectonophysics, 289(1-3):153-169. Rutledge J T, Phillips W S. 2003. Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, east Texas. Geophysics, 68(2):441-452. Šílený J, Milev A. 2008. Source mechanism of mining induced seismic events-resolution of double couple and non double couple models. Tectonophysics, 456(1):3-15. Šílený J, Hill D P, Eisner L, et al. 2009. Non double couple mechanisms of microearthquakes induced by hydraulic fracturing. Journal of Geophysical Research:Solid Earth, 114(B8):B08307, doi:10.1029/2008JB005987. Sen A T, Cesca S, Bischoff M, et al. 2013. Automated full moment tensor inversion of coal mining-induced seismicity. Geophysical Journal International, 195(2):1267-1281. Song F, Toksöz M N. 2011. Full-waveform based complete moment tensor inversion and source parameter estimation from downhole microseismic data for hydrofracture monitoring. Geophysics, 76(6):WC103-WC116. Song F X, Warpinski N R, Toksöz M N. 2014. Full-waveform based microseismic source mechanism studies in the Barnett Shale:linking microseismicity to reservoir geomechanics. Geophysics, 79(2):KS109-KS126. Szu H, Hartley R. 1987. Fast simulated annealing. Physics Letters A, 122(3-4):157-162. Tibi R, Vermilye J, Lacazette A, et al. 2013. Assessment of hydraulic fracture complexity and stress field variability in an unconventional reservoir from composite moment tensor of double-Couple microseismic events.//73th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts. Udías A, Madariaga R, Buforn E. 2014. Source Mechanisms of Earthquakes:Theory and Practice. Cambridge:Cambridge University Press, 203-204. Vavryčuk V. 2007. On the retrieval of moment tensors from borehole data. Geophysical Prospecting, 55(3):381-391. Wang W M, He Y M, Yao Z X. 2004. Complexity of the coseismic rupture for 1999 Chi-Chi Earthquake (Taiwan) from inversion of GPS observations. Tectonophysics, 382(3-4):151-172. Warpinski N R, Branagan P T, Peterson R E, et al. 1997. Microseismic and deformation imaging of hydraulic fracture growth and geometry in the C sand interval, GRI/DOE M-Site project.//67th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts. Warpinski N R, Branagan P T, Peterson R E, et al. 1998. Mapping hydraulic fracture growth and geometry using microseismic events detected by a wireline retrievable accelerometer array.//68th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts. Warpinski N R, Du J. 2010. Source-mechanism studies on microseismicity induced by hydraulic fracturing.//90th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts. Xie X B, Yao Z X. 1989. A generalized reflection-transmition coefficient matrix method to calculate static displacement field of a stratified half-space by dislocation source. Acta Geophysica Sinica (in Chinese), 32(3):270-280. Yang X C, Zhu H B, Cui S G, et al. 2015. Application of P-wave first-motion focal mechanism solutions in microseismic monitoring for hydraulic fracturing. Geophysical Prospecting for Petroleum (in Chinese), 54(1):43-50. Yao Z X, Harkrider D G. 1983. A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms. Bulletin of the Seismological Society of America, 73(6A):1685-1699. Yao Z X, Zheng T Y, Cao B R, et al. 1991. The method of determining middle and strong earthquake's process using P waveform data. Progress in Geophysics (in Chinese), 6(4):6-36. Yao Z X, Ji C. 1997. The inverse problem of finite fault study in time domain. Acta Geophysica Sinica (in Chinese), 40(5):691-701. Zhai H Y, Chang X, Wang Y B, et al. 2016. Inversion for microseismic focal mechanisms in attenuated strata and its resolution. Chinese Journal of Geophysics (in Chinese), 59(8):3025-3036, doi:10.6038/cjg20160825. Zhang L B, Yao Z X, Ji C, et al. 1997. Fast simulated annealing algorithm and its application. Oil Geophysical Prospecting (in Chinese), 32(5):654-660. Zhang X, Zhang J. 2016. Microseismic search engine for real-time estimation of source location and focal mechanism. Geophysics, 2016, 81(5):KS169-KS182. Zhao L S, Helmberger D V. 1994. Source estimation from broadband regional seismograms. Bulletin of the Seismological Society of America, 84(1):91-104. Zhao P, Kühn D, Oye V, et al. 2014. Evidence for tensile faulting deduced from full waveform moment tensor inversion during the stimulation of the Basel enhanced geothermal system. Geothermics, 52:74-83. Zhu H B, Yang X C, Wang Y, et al. 2014. The application of microseismic source mechanism inversion in hydraulic fracturing monitoring. Geophysical Prospecting for Petroleum (in Chinese), 53(5):556-561. 郝金来, 姚振兴. 2012a. 小波域反演确定区域地震震源机制. 中国科学:地球科学, 42(2):191-201. 郝金来, 姚振兴. 2012b. 均匀弹性分层介质模型中的同震位移、应变以及应力. 地球物理学报, 55(5):1682-1694, doi:10.6038/j.issn.0001-5733.2012.05.025. 谢小碧, 姚振兴. 1989. 计算分层介质中位错点源静态位移场的广义反射、透射系数矩阵和离散波数方法. 地球物理学报, 32(03):270-280. 杨心超, 朱海波, 崔树果等. 2015. P波初动震源机制解在水力压裂微地震监测中的应用. 石油物探, 54(1):43-50. 姚振兴, 郑天愉, 曹柏如等. 1991. 用P波波形资料测定中强地震震源过程的方法. 地球物理学进展, 6(4):6-36. 姚振兴, 纪晨. 1997. 时间域内有限地震断层的反演问题. 地球物理学报, 40(5):691-701. 翟鸿宇, 常旭, 王一博等. 2016. 含衰减地层微地震震源机制反演及其反演分辨率. 地球物理学报, 59(8):3025-3036, doi:10.6038/cjg20160825. 张霖斌, 姚振兴, 纪晨等. 1997. 快速模拟退火算法及应用. 石油地球物理勘探, 32(5):654-660. 朱海波, 杨心超, 王瑜等. 2014. 水力压裂微地震监测的震源机制反演方法应用研究. 石油物探, 53(5):556-561.