YANG BaiCun,
QIN SiQing,
XUE Lei et al
.2018.Identification of seismic type of 2017 Iraq MW7.3 earthquake and analysis of its post-quake trend.Chinese Journal Of Geophysics,61(2): 616-624,doi: 10.6038/cjg2018L0737
Identification of seismic type of 2017 Iraq MW7.3 earthquake and analysis of its post-quake trend
YANG BaiCun1,2,3, QIN SiQing1,2,3, XUE Lei1,2, ZHANG Ke1,2,3
1. Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 2. Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:The 2017 Iraq MW7.3 earthquake occurred in the Baghdad seismic zone defined by us. The seismic type of the earthquake is discussed according to its different magnitude parameters provided by various agencies, and then its post-quake trend in this seismic zone is analyzed in this paper, based on the theory about the brittle failures of multiple locked patches in a seismogenic fault system. The present results show that if the 2017 Iraq earthquake is with a magnitude of MW7.3, it is identified as a significant foreshock occurred in the evolution process towards the peak strength point of the third locked patch, demonstrating that a MW7.7~8.2 (or double earthquakes of MW7.5~8.0) characteristic earthquake will take place in the near future because the seismic zone has closed to the critical state; if the 2017 Iraq earthquake is viewed as MW7.5, it may yet be one of the double-shock-type characteristic earthquakes besides as a significant foreshock,implying that the other MW7.5 earthquake will strike the seismic zone within two years; if the 2017 Iraq earthquake is viewed as MS7.8, it is identified as a characteristic earthquake occurred at the peak strength point of the third locked patch, which is in good agreement with our prospective medium-to-long term prediction of this earthquake. Furthermore, we judge that the MS7.8 earthquake is not a mainshock, demonstrating that the next MW7.8~8.3 (or double earthquakes of MW7.6~8.1) characteristic earthquake will take place in the remote future because the seismic zone is far from the critical state at present.
Abdulnaby W, Mahdi H, Numan N M S, et al. 2014. Seismotectonics of the Bitlis-Zagros Fold and Thrust Belt in northern Iraq and surrounding regions from moment tensor analysis. Pure Appl. Geophys., 171(7):1237-1250, doi:10.1007/s00024-013-0688-4. Brace W F, Paulding B W, Scholz C H. 1966. Dilatancy in the fracture of crystalline rocks. J. Geophys. Res., 71(16):3939-3953. Brantut N, Heap M J, Meredith P G, et al. 2013. Time-dependent cracking and brittle creep in crustal rocks:A review. J. Struct. Geol., 52(5):17-43, doi:10.1016/j.jsg.2013.03.007. Chen H R, Qin S Q, Xue L, et al. 2017. Characterization of brittle failure of rock and limitation of Weibull distribution. Progress in Geophys. (in Chinese), 32(5):2200-2206, doi:10.6038/pg20170548. Deng Q D, Ran Y K, Yang X P, et al. 2007. Map of Active Tectonic in China (in Chinese). Beijing:Seismological Press. Fortin J, Stanchits S, Dresen G, et al. 2009. Acoustic emissions monitoring during inelastic deformation of porous sandstone:Comparison of three modes of deformation. Pure. Appl. Geophys., 166(5-7):823-841, doi:10.1007/s00024-009-0479-0. Hatzfeld D, Molnar P. 2010. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Rev. Geophys., 48(2):RG2005, doi:10.1029/2009RG000304. Ishida T, Kanagawa T, Kanaori Y. 2010. Source distribution of acoustic emissions during an in-situ direct shear test:Implications for an analog model of seismogenic faulting in an inhomogeneous rock mass. Eng. Geol.,110(3-4):66-76, doi:10.1016/j.enggeo.2009.11.003. Jahani S, Callot J P, Letouzey J, et al. 2009. The eastern termination of the Zagros Fold-and-Thrust Belt, Iran:Structures, evolution, and relationships between salt plugs, folding, and faulting. Tectonics,28(6):217-234, doi:10.1029/2008TC002418. Jin Z M, Zhang J F, Green H W Ⅱ, et al. 2001. Rheology of deep oceanic subduction zone and its implication for earth dynamics:resulting from mantle rocks high temperature high pressure experiments. Science in China (Series D):Earth Science (in Chinese), 31(12):969-976. Keilis-Borok V I. 1994. Symptoms of instability in a system of earthquake-prone faults. Physica D, 77(1-3):193-199, doi:10.1016/0167-2789(94)90133-3. Lei X L, Kusunose K, Satoh T, et al. 2003. The hierarchical rupture process of a fault:an experimental study. Phys. Earth Planet. In.,137(1-4):213-228, doi:10.1016/S0031-9201(03)00016-5. Li P, Qin S Q, Xue L, et al. 2016. Identification method of foreshock events. Progress in Geophys. (in Chinese), 31(4):1450-1455, doi:10.6038/pg20160406. Li T D, Geng S F, Yan K M, et al. The geological map of Asia and Europe (in Chinese). Beijing:China Cartographic Publishing House. Martin C D, Chandler N A. 1994. The progressive fracture of Lac du Bonnet granite. Int. J. Rock Mech. Mining Sci., 31(6):643-659, doi:10.1016/0148-9062(94)90005-1. Mcquarrie N. 2004. Crustal scale geometry of the Zagros fold-thrust belt, Iran. J. Struct. Geol., 26(3):519-535, doi:10.1016/j.jsg.2003.08.009. Miao P S. 2010. Global tectonic systems map (in Chinese). Beijing:Seismological Press. Qin S Q, Xu X W, Hu P, et al. 2010. Brittle failure mechanism of multiple locked patches in a seismogenic fault system and exploration on a new way for earthquake prediction. Chinese J. Geophys. (in Chinese), 53(4):1001-1014, doi:10.3969/j.issn.0001-5733.2010.04.025. Qin S Q, Li P, Yang B C, et al. 2016a. The identification of mainshock events for main seismic zones in seismic belts of the Circum-Pacific, ocean ridge and continental rift. Progress in Geophys. (in Chinese), 31(2):574-588, doi:10.6038/pg20160209. Qin S Q, Yang B C, Wu X W, et al. 2016b. The identification of mainshock events for some seismic zones in mainland China (Ⅱ). Progress in Geophys. (in Chinese), 31(1):115-142, doi:10.6038/pg20160114. Qin S Q, Yang B C, Xue L, et al. 2016c. The identification of mainshock events for main seismic zones in the Eurasian seismic belt. Progress in Geophys. (in Chinese), 31(2):559-573, doi:10.6038/pg20160208. Qin S Q, Yang B C, Xue L, et al. 2016d. Revision method of earthquake magnitude. Progress in Geophys. (in Chinese), 31(3):965-972, doi:10. 6038/pg20160305. Regard V, Bellier O, Thomas J, et al. 2004. Accommodation of Arabia-Eurasia convergence in the Zagros-Makran transfer zone, SE Iran:A transition between collision and subduction through a young deforming system. Tectonics,23(23):TC4007, doi:10.1029/2003TC001599. Sammonds P R, Meredith P G, Main I G. 1992. Role of pore fluids in the generation of seismic precursors to shear fracture. Nature, 359(6392):228-230. Scholz C H, Sykes L R, Aggarwal Y P. 1973. Earthquake prediction:A physical basis. Science, 181(4102):803-810, doi:10.1126/science.181.4102.803. Shen J, Bai M X, Shi G L, et al. 2014. The Map of Seismotectonics in the Xinjiang and its adjacent areas (in Chinese). Beijing:China University of Geoscience Press. Song Z P, Zhang G M, Liu J, et al. 2011. Global Earthquake Catalog (in Chinese). Beijing:Seismological Press. Stern R J, Johnson P. 2010. Continental lithosphere of the Arabian Plate:A geologic, petrologic, and geophysical synthesis. Earth-Sci. Rev., 101(1-2):29-67, doi:10.1016/j.earscirev.2010.01.002. Wen L, Zhang G Y, Li Y J, et al. 2015. Structure-deformation features of the Zagros fold and thrust belt. Scientia. Geologica. Sinica. (in Chinese), 50(2):653-664, doi:10. 3969/j.issn.0563-5020.2015.02.020. Wilson J T. 1965. A new class of faults and their bearing on continental drift. Nature, 207(4995):343-347. Vallianatos F, Michas G, Benson P, et al. 2013. Natural time analysis of critical phenomena:The case of acoustic emissions in triaxially deformed Etna basalt. Physica A,392(20):5172-5178, doi:10.1016/j.physa.2013.06.051. Xue L, Qin S Q, Sun Q, et al. 2014. A study on crack damage stress thresholds of different rock types based on uniaxial compression tests. Rock Mech. Rock Eng., 47(4):1183-1195, doi:10.1007/s00603-013-0479-3. Xue L, Qin S Q, Yang B C, et al. 2017. Earthquake tendency of the Himalayan seismic belt. ArXiv preprint, arXiv:1708.07262. Yang B C, Qin S Q, Xue L, et al. 2017a. A physical self-similarity law describing the accelerated failure behavior of rocks. Chinese J. Geophys. (in Chinese), 60(5):1746-1760, doi:10.6038/cjg20170512. Yang B C, Qin S Q, Xue L, et al. 2017b. What kinds of earthquakes can be predicted? Progress in Geophys. (in Chinese), 32(5):1953-1960, doi:10.6038/pg20170512. Zhang H R, Hou Z Q. 2015. Pattern and process of Continent-Continent collision orogeny:a case study of the Tethys Collisional Orogen. Acta. Geologica. Sinica. (in Chinese), 89(9):1539-1559. Zhang P Z, Deng Q D, Zhang G M, et al. 2003. Active tectonic blocks and strong earthquakes in the continent China. Science in China (Series D):Earth Science (in Chinese),33(B04):12-20. Zhang W Y. 1984. A guiding exposition to block structure (in Chinese). Beijing:Petroleum Industrial Press. Zhang Y M, Wang L M, Dong R S, et al. 1981. A booklet of directions to the Map of Eurasia Seismotectonics (in Chinese). Beijing:Cartographic Publishing House. Zhang Z P, Zhang R, Xie H P, et al. 2015. Differences in the acoustic emission characteristics of rock salt compared with granite and marble during the damage evolution process. Environ. Earth Sci., 73(11):6987-6999, doi:10.1007/s12665-015-4406-7. Zhao X G, Wang J, Ma L K, et al. 2013. Acoustic emission behaviors of the Beishan granite under uniaxial and triaxial compression conditions. Proceedings of the 3rd ISRM SINOROCK Symposium. London:CRC Press, 75-80. 陈竑然, 秦四清, 薛雷等. 2017. 岩石脆性破坏表征与Weibull分布适用范围.地球物理学进展, 32(5):2200-2206, doi:10.6038/pg20170548. 邓起东, 冉勇康, 杨晓平等. 2007. 中国活动构造图. 北京:地震出版社. 金振民, 章军锋, Green H W Ⅱ等. 2001. 大洋深俯冲带流变性质及其地球动力学意义-来自地幔岩高温高压实验的启示. 中国科学D辑:地球科学, 31(12):969-976. 李培, 秦四清, 薛雷等. 2016. 前震事件判识方法. 地球物理学进展, 31(4):1450-1455, doi:10.6038/pg20160406. 李廷栋, 耿树方, 严克明等. 1997. 亚欧地质图. 北京:地质出版社. 苗培实. 2010. 全球构造体系图. 北京:地震出版社. 秦四清, 徐锡伟, 胡平等. 2010. 孕震断层的多锁固段脆性破裂机制与地震预测新方法的探索. 地球物理学报, 53(4):1001-1014, doi:10.3969/j.issn.0001-5733.2010.04.025. 秦四清, 李培, 杨百存等. 2016a. 环太平洋、大洋海岭与大陆裂谷地震带主要地震区主震事件判识. 地球物理学进展, 31(2):574-588, doi:10.6038/pg20160209. 秦四清, 杨百存, 吴晓娲等. 2016b. 中国大陆某些地震区主震事件判识(Ⅱ). 地球物理学进展, 31(1):115-142, doi:10.6038/pg20160114. 秦四清, 杨百存, 薛雷等. 2016c. 欧亚地震带主要地震区主震事件判识. 地球物理学进展, 31(2):559-573, doi:10.6038/pg20160208. 秦四清, 杨百存, 薛雷等. 2016d. 地震震级修订方法. 地球物理学进展, 31(3):965-972, doi:10. 6038/pg20160305. 沈军, 柏美祥, 石广岭等. 2014. 中国新疆及邻区地震构造图. 北京:中国地质大学出版社. 宋治平, 张国民, 刘杰等. 2011. 全球地震目录. 北京:地震出版社. 文磊, 张光亚, 李曰俊等. 2015. 扎格罗斯褶皱冲断带构造变形特征. 地质科学, 50(2):653-664, doi:10.3969/j.issn.0563-5020.2015.02.020. 杨百存, 秦四清, 薛雷等. 2017a. 岩石加速破裂行为的物理自相似律. 地球物理学报, 60(5):1746-1760, doi:10.6038/cjg20170512. 杨百存, 秦四清, 薛雷等. 2017b. 什么类型的地震能被预测? 地球物理学进展, 32(5):1953-1960, doi:10.6038/pg20170512. 张洪瑞, 侯增谦. 2015. 大陆碰撞造山样式与过程:来自特提斯碰撞造山带的实例. 地质学报, 89(9):1539-1559. 张培震, 邓起东, 张国民, 等. 2003. 中国大陆的强震活动与活动地块. 中国科学D辑:地球科学, 33(B04):12-20. 张文佑. 1984. 断块构造导论. 北京:石油工业出版社. 张裕明, 汪良谋, 董瑞树等. 1981. 亚欧地震构造图说明书. 北京:地图出版社.