YIN ChangChun,
SUN SiYuan,
GAO XiuHe et al
.2018.3D joint inversion of magnetotelluric and gravity data based on local correlation constraints.Chinese Journal Of Geophysics,61(1): 358-367,doi: 10.6038/cjg2018K0765
基于局部相关性约束的三维大地电磁数据和重力数据的联合反演
殷长春, 孙思源, 高秀鹤, 刘云鹤, 陈辉
吉林大学地球探测科学与技术学院, 长春 130026
3D joint inversion of magnetotelluric and gravity data based on local correlation constraints
YIN ChangChun, SUN SiYuan, GAO XiuHe, LIU YunHe, CHEN Hui
College of Geo-exploration Sciences and Technology, Jilin University, Changchun 130026, China
Abstract:Joint inversion of multiple geophysical data has attracted widespread attentions due to its large potential to solve the problem with the non-uniqueness in geophysical inversions. In general, different geophysical anomalies can be caused by a same abnormal body, and the distributions of these parameters are correlated. Thus, we develop a joint inversion algorithm based on local correlation constraints. In this algorithm, which assumes that every local region is linearly correlated, the data of different types are modeled with constraints of the local correlations to realize joint inversion and reduce non-uniqueness. We adopt an alternative joint inversion scheme to improve the efficiency of the inversion. With the algorithm, we test on 3D synthetic magnetotelluric (MT) and gravity data. The numerical experiments show that the new algorithm can efficiently exploit different geophysical data to resolve underground structures. Compared to single geophysical inversion, the problem with the non-uniqueness in geophysical inversions is largely improved using this appraoch.
Abubakar A, Gao G, Habashy T M, et al. 2012. Joint inversion approaches for geophysical electromagnetic and elastic full-waveform data. Inverse Problems, 28(5):055016. Berge P A, Berryman J G, Bertete-Aguirre H, et al. 2000. Joint inversion of geophysical data for site characterization and restoration monitoring. LLNL Rep. UCRL-ID-128343. Chen Z A, Wu X Y. 2001. Accuracy of measuring velocity improved by correlative analysis method. Progress in Geophysics (in Chinese), 16(1):101-103. Cui Z J, Li Z X, Chen Z L, et al. 2012. A study on the new method for determining small earthquake sequence type-Correlation analysis of spectral amplitude. Chinese Journal of Geophysics (in Chinese), 55(5):1718-1724, doi:10.6038/j.issn.0001-5733.2012.05.028. Egbert G D, Bennett A F, Foreman M G G. 1994. TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research, 99(C12):24821-24852. Gallardo L A, Meju M A. 2003. Characterization of heterogeneous near-surface materials by joint 2D inversion of DC resistivity and seismic data. Geophysical Research Letters, 30(13):1658, doi:10.1029/2003GL017370. Gallardo L A, Meju M A. 2004. Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints. Journal of Geophysical Research:Solid Earth, 109(B3):B03311, doi:10.1029/2003JB002716. Gallardo L A, Meju M A. 2011. Structure-coupled multiphysics imaging in geophysical sciences. Reviews of Geophysics, 49(1):RG1003, doi:10.1029/2010RG000330. Gao J, Zhang H J. 2016. Two-dimensional joint inversion of seismic velocity and electrical resistivity using seismic travel times and full channel electrical measurements based on alternating cross-gradient structural constraint. Chinese Journal of Geophysics (in Chinese), 59(11):4310-4322 doi:10.6038/cjg20161131. Haber E, Oldenburg D. 1997. Joint inversion:A structural approach. Inverse Problems, 13(1):63-77. Jing R Z, Bao G S, Chen S Q. 2003. A review of the researches for geophysical combinative inversion. Progress in Geophysics (in Chinese), 18(3):535-540. Li T L, Zhang R Z, Pak Y C, et al. 2016. Multiple joint inversion of geophysical data with sub-region cross gradient constraints. Chinese Journal of Geophysics (in Chinese), 59(8):2979-2988, doi:10.6038/cjg20160821. Li Z X, Tan H D, Fu S S, et al. 2015. Two-dimensional synchronous inversion of TDIP with cross-gradient constraint. Chinese Journal of Geophysics (in Chinese), 58(12):4718-4726, doi:10.6038/cjg20151232. Paasche H, Tronicke J. 2007. Cooperative inversion of 2D geophysical data sets:A zonal approach based on fuzzy C-means cluster analysis. Geophysics, 72(3):A35-A39. Portniaguine O, Zhdanov M S. 2002. 3-D magnetic inversion with data compression and image focusing. Geophysics, 67(5):1532-1541. Siripunvaraporn W, Egbert G. 2000. An efficient data-subspace inversion method for 2-D magnetotelluric data. Geophysics, 65(3):791-803. Sun J J, Li Y G. 2011. Geophysical inversion using petrophysical constraints with application to lithology differentiation.//12th International Congress of the Brazilian Geophysical Society & EXPOGEF. Rio de Janeiro, Brazil:SEG, 861-866. Sun J J, Li Y G. 2012. Joint inversion of multiple geophysical data:A petrophysical approach using guided fuzzy c-means clustering.//SEG Technical Program Expanded Abstracts 2012. SEG, 1-5. Sun J J, Li Y G. 2015. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering. Geophysics, 80(4):ID1-ID18. Tarantola A. 2005. Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia, PA:Society for Industrial and Applied Mathematics. Wang J L, Yu H Y, Hu S B, et al. 2011. Some notes on Neyman-Pearson Lemma. Journal of Mathematics (in Chinese), 31(2):357-361. Yang W C. 1997. Theory and Methods of Geophysical Inversion (in Chinese). Beijing:Geological Publishing House. Yu P, Wang J L, Wu J S, et al. 2006. Review and discussions on geophysical joint inversion. Progress in Exploration Geophysics (in Chinese), 29(2):87-93. Zhang J, Morgan F D. 1997. Joint seismic and electrical tomography.//Symposium on the Application of Geophysics to Engineering and Environmental Problems. SEG, 391-396. Zhdanov M S, Ellis R, Mukherjee S. 2004. Three-dimensional regularized focusing inversion of gravity gradient tensor component data. Geophysics, 69(4):925-937. 陈祖安, 伍向阳. 2001. 用相关分析法提高波速测量精度. 地球物理学进展, 16(1):101-103. 崔子健, 李志雄, 陈章立等. 2012. 判别小震群序列类型的新方法研究——谱振幅相关分析法. 地球物理学报, 55(5):1718-1724, doi:10.6038/j.issn.0001-5733.2012.05.028. 高级, 张海江. 2016. 基于交叉梯度交替结构约束的二维地震走时与全通道直流电阻率联合反演. 地球物理学报, 59(11):4310-4322, doi:10.6038/cjg20161131. 敬荣中, 鲍光淑, 陈绍裘. 2003. 地球物理联合反演研究综述. 地球物理学进展, 18(3):535-540. 李桐林, 张镕哲, 朴英哲等. 2016. 部分区域约束下的交叉梯度多重地球物理数据联合反演. 地球物理学报, 59(8):2979-2988, doi:10.6038/cjg20160821. 李兆祥, 谭捍东, 付少帅等. 2015. 基于交叉梯度约束的时间域激发极化法二维同步反演. 地球物理学报, 58(12):4718-4726, doi:10.6038/cjg20151232. 王金亮, 余海燕, 胡松波等. 2011. 关于Neyman-Pearson基本引理的几个注记. 数学杂志, 31(2):357-361. 杨文采. 1997. 地球物理反演的理论与方法. 北京:地质出版社. 于鹏, 王家林, 吴健生等. 2006. 地球物理联合反演的研究现状和分析. 勘探地球物理进展, 29(2):87-93.