WANG Huan,
LI HaiBing,
ZHANG Lei et al
.2018.Pseudotachylytes in the Longmen Shan fault zone and fault weakening mechanisms.Chinese Journal Of Geophysics,61(5): 1698-1714,doi: 10.6038/cjg2018M0156
Pseudotachylytes in the Longmen Shan fault zone and fault weakening mechanisms
WANG Huan1, LI HaiBing1, ZHANG Lei1, SUN ZhiMing2, SI JiaLiang1, PEI JunLing2
1. Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China; 2. Key Laboratory of Paleomagnetism and Tectonic Reconstruction of Ministry of Natural Resources, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
Abstract:Fault generated pseudotachylytes are considered as fossil earthquakes, preserving important information about faulting mechanisms and earthquake generation processes, which are of great significance to understanding fault behavior and seismicity. Integrating the surface outcrops and study of the Wenchuan earthquake Fault Scientific Drilling (WFSD-1 and WFSD-2) cores, this paper presents detailed analyses on the structures and mineral composition of the pseudotachylytes in the Longmen Shan fault zone. These pseudotachylytes and related cataclasitic rocks are well preserved in the Neoproterozoic Pengguan Complex along the southern Yingxiu-Beichuan fault. They are black, brown to gray in appearance, with thicknesses ranging from several millimeters to tens of centimeters, appearing as fault veins and injection veins. Multiple lines of microstructural evidence, such as embayed fragments, honeycomb-like vesicles, viscous flow structures and microlites or aggregates with various morphologies of acicular, lath-like, plume-like, fibrous and granulous, indicate that the pseudotachylytes were formed as results of frictional melting during the seismic slip. This implies that melt lubrication played a most important role in the fault weakening process. Thermal pressurization and mechanical lubrication could also occur at different slip stages. Besides, different colored pseudotachylyte veins, observed at both macroscopic and microscopic scales, may indicate different alteration or devitrification degrees, and their overprinting relations suggest they were multiply generated. This means that the pseudotachylyte-generated earthquake events had happened repeatedly in the Yingxiu-Beichuan fault zone. Recent research shows that the pseudotachylytes were produced at ~10—15 km-depth in the Late Triassic. Combined with fault gouge and fault breccia in the Xujiahe Formation, the ~180—280 m-wide Yingxiu-Beichuan fault rocks zone represents the products of long-term fault activities. Known as the steepest topographic boundary in the Longmen Shan area, the crust shortening caused by the long-term seismic activity of the Yingxiu-Beichuan fault may be responsible for the rapid uplift of the Longmen Shan.
Austrheim H, Boundy T M. 1994. Pseudotachylytes generated during seismic faulting andeclogitization of the deep crust. Science, 265(168): 82-83. Austrheim H, Andersen T B. 2004. Pseudotachylytes from Corsica: Fossil earthquakes from a subduction complex. Terra Nova, 16(4): 193-197. Brodsky E E, Kanamori H. 2001. Elastohydrodynamic lubrication of faults.Journal of Geophysical Research, 106(B8): 16357-16374. Burchfiel B C, Chen Z L, Liu Y, et al. 1995. Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review, 37(8): 661-735. Burchfiel B C, Royden L H,van der Hilst R D, et al. 2008. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People's Republic of China. GSA Today, 18(7): 4-11, doi: 10.1130/GSATG18A.1. Camacho A, Vernon R H, Fitz Gerald J D. 1995. Large volumes of anhydrous pseudotachylyte in the Woodroffe Thrust, eastern Musgrave Ranges, Australia.Journal of Structural Geology, 17(3): 371-383. Chambon G, Schmittbuhl J, Corfdir A. 2002. Laboratory gouge friction: Seismic-like slip weakening and secondary rate- and state-effects.Geophysical Research Letter, 29(10): 1366, doi: 10.1029/2001GL014467. Cowan D. 1999. Do faults preserve a record of seismic slip?A field geologist's opinion. Journal of Structural Geology, 21(8): 995-1001. Deng Q D, Chen S F, Zhao X L. 1994. Tectonics, seismisity and dynamics of Longmenshan Mountains and its adjacent regions. Seismology and Geology (in Chinese), 16(4): 389-403. Densmore A L, Ellis M A, Li Y, et al. 2007. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau.Tectonics, 26(4), doi: 10.1029/2006TC001987. Di Toro G, Goldsby D L, Tullis T E. 2004. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature, 427(6973): 436-439. Di Toro G, Pennacchioni G, Teza G. 2005. Can pseudotachylytes be used to infer earthquake source parameters? An example limitations in the study of exhumed faults.Tectonophysics, 402(1-4): 3-20. Di Toro G, Hirose T, Nielsen S, et al. 2006. Natural and experimental evidence of melt lubrication of faults during earthquakes.Science, 311(5761): 647-649. Ferrand T P, Labrousse L, Eloy G, et al. 2018. Energy balance from a mantle pseudotachylyte, Balmuccia, Italy.Journal of Geophysical Research: Solid Earth,doi: 10.1002/2017JB014795. Ferré E C, Allen J L, Lin A M. 2005. Pseudotachylytes and seismogenic friction:An introduction to current research. Tectonophysics, 402(1-4): 1-2. Ferré E C, Meado A L, Geissman J W, et al. 2017. Earthquakes in the mantle? Insights from rock magnetism of pseudotachylytes.Journal of Geophysical Research: Solid Earth, 122(11): 8769-8785, doi: 10.1002/2017JB014618. Fialko Y, Khazan Y. 2005. Fusion by earthquake fault friction: Stick or slip?Journal of Geophysical Research, 110(B12): B12407, doi: 10.1029/2005JB003869. Fu B H, Shi P L, Guo H D, et al. 2011. Surface deformation related to the 2008 Wenchuan earthquake, and mountain building of the Longmen Shan, eastern Tibetan Plateau. Journal of Asian Earth Sciences, 40(4): 805-824. Han R, Shimamoto T, Hirose T, et al. 2007. Ultralow friction of carbonate faults caused by thermal decomposition.Science, 316(5826): 878-881. Han R, Hirose T, Jeong G Y, et al. 2014. Frictional melting of clayey gouge during seismic fault slip: Experimental observation and implications. Geophysical Research Letter, 41(5): 5457-5766, doi: 10.1002/2014GL061246. Hirono T, Kameda J, Kanda H, et al. 2014. Mineral assemblage anomalies in the slip zone of the 1999 Taiwan Chi-Chi earthquake: Ultrafine particles preserved only in the latest slip zone. Geophysical Research Letter, 41(9): 3052-3059, doi: 10.1002/2014GL059805. Hirose T, Shimamoto T. 2005. Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research, 110(B5):B05202, doi: 10.1029/2004JB003207. Ikesawa E, Sakaguchi A, Kimura G. 2003. Pseudotachylyte from an ancient accretionary complex: Evidence for melt generation during seismic slip along a master décollement? Geology, 31(7): 637-640. Janssen C, Wirth R, Rybacki E, et al. 2010. Amorphous material in SAFOD core samples (San Andreas Fault): Evidence for crush-origin pseudotachylytes?. Geophysical Research Letter, 37(1): 73-78, L01303, doi:10.1029/2009GL040993. Jia D, Li Y Q, Lin A M, et al. 2010. Structural model of 2008 MW7.9 Wenchuan earthquake in the rejuvenated Longmen Shan thrust belt, China. Tectonophysics, 491(1-4): 174-184. Kanamori H, Brodsky E E. 2004. The physics of earthquakes.Physics Today, 67(8): 1429-1496. Kirkpatrick J D, Rowe C D, White J C, et al. 2013. Silica gel formation during fault slip: Evidence from the rock record. Geology, 41(9):1015-1018. Kohlstedt D L, Holtzman B K. 2009. Shearing melt out of the earth: An experimentalist's perspective on the influence of deformation on melt extraction. Annual Review of Earth and Planetary Sciences, 37(1): 561-593. Li H B, Si J L, Pan J W, et al. 2008a. Deformation feature of active fault and recurrenceintervals estimation of large earthquake. Geological Bulletin of China (in Chinese), 27(12): 1968-1991. Li H B, Fu X F,van der Woerd J, et al. 2008b. Co-seismic surface rupture and dextral-slip oblique thrusting of the MS8.0 Wenchuan earthquake. Acta Geologica Sinica (in Chinese), 82(12): 1623-1643. Li H B, Wang H, Xu Z Q, et al. 2013. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 584: 23-42. Li H B, Xue L, Brodsky E E, et al. 2015. Long-term temperature records following the MW7.9 Wenchuan (China) earthquake are consistent with low friction. Geology, 43(2): 163-166. Li Y, Zhou R J, Densmore A L, et al. 2006. Sedimentary responses to Late Cenozoic thrusting and strike-slipping of Longmen Shan along eastern margin of Tibetan Plateau.Acta Sedimentologica Sinica (in Chinese), 24(2): 153-164. Lin A M. 1994. Glassy pseudotachylyte veins from the Fuyun fault zone, northwest China. Journal of Structural Geology, 16(1): 71-83. Lin A M, Chen A, Ouchi T, et al. 2001. Frictional fusion due to coseismic landsliding during the 1999 Chi-Chi (Taiwan) ML7.3 earthquake. Geophysical Research Letter, 28(20): 4011-4014. Lin A M, Sun Z M, Yang Z Y. 2003. Multiple generations of pseudotachylyte in the brittle to ductile regimes, Qinling-Dabie Shan ultrahigh-pressure metamorphic complex, central China. Island Arc, 12(4): 423-435. Lin A M. 2008. FossilEarthquakes: The Formation and Preservation of Pseudotachylytes. Berlin Heidelberg: Springer, 348. Liu J, Zhang Z H, Wen L, et al. 2008. The MS8.0 Wenchuan earthquake co-seismic rupture and its tectonic implications—An out-of-sequence thrusting event with slip partitioned on multiple faults. Acta Geologica Sinica (in Chinese), 82(12): 1707-1722. Ma K F, Brodsky E E, Mori J, et al. 2003.Evidence for fault lubrication during the 1999 Chi-Chi, Taiwan, earthquake (MW7.6). Geophysical Research Letters, 30(5):1244, doi:10.1029/2002GL015380. Maddock R H, Grocott J,Van Nes M. 1987. Vesicles, amygdales and similar structures in fault-generated pseudotachylytes. Lithos, 20(5): 419-432. Magloughlin J F. 1992. Microstructural and chemical changes associated with cataclasis and frictional melting at shallow crustal levels: The cataclasite-pseudotachylyte connection. Tectonophysics, 204(3-4): 243-260. Mase C W, Smith L. 1987. Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault. Journal of Geophysical Research, 92(B7): 6249-6272. McKenzie D, Brune J N. 1972. Melting on fault planes during large earthquakes.Geophysical Journal International, 29(1): 65-78. McNulty B A. 1995. Pseudotachylyte generated inthe semi-brittle and brittle regimes, Bench Canyon shear zone, central Sierra Nevada. Journal of Structural Geology, 17(11): 1507-1521. Melosh H J. 1996. Dynamical weakening of faults by acoustic fluidization.Nature, 379(6566): 601-606. Otsuki K, Hirono T, Omori M, et al. 2009. Analyses of pseudotachylyte from Hole-B of Taiwan Chelungpu Fault Drilling Project (TCDP); their implications for seismic slip behaviors during the 1999 Chi-Chi earthquake. Tectonophysics, 469(1-4): 13-24. Pei J L, Zhou Z Z, Dong S G, et al. 2014. Magnetic evidence revealing frictional heating from fault rocks in granites.Tectonophysics, 637: 207-217. Rempel A W, Rice J R. 2006. Thermal pressurization and onset of melting in fault zones. Journal of Geophysical Research, 111(B9): B09314, doi: 10.1029/2006JB004314. Rempel A W. 2006. The effects of flash-weakening and damage on the evolution of fault strength and temperature.//Abercrombie R, McGarr A, Di Toro G, eds. Earthquakes: Radiated Energy and the Physics of Faulting. Geophysical Monograph Series, 170. Washington, D.C.: American Geophysical Union, 263-270. Rice J R. 2006. Heating and weakening of faults during earthquake slip.Journal of Geophysical Research, 111(B5): B05311, doi: 10.1029/2005JB004006. Rogozhin E A, Shen X H. 2011. The seismotectonic and macroseismic features of the Wenchuan (Sichuan) earthquake (MS=8.0) of May 12, 2008. Seismic Instruments, 47(2): 167-179. Rowe C D, Kirkpatrick J D, Brodsky E E. 2012. Fault rock injections record paleo-earthquakes. Earth and Planetary Science Letters, 335-336: 154-166. Shigetomi M, Lin A M. 1999. Seismic events inferred from the layering structures of faultzones and pseudotachylytes in the Nojima fault zone, Japan. Struct. Geol. J. Tectonic Group Jpn, 43: 33-42. Sibson R H. 1975. Generation of pseudotachylyte by ancient seismic faulting. Geophysical Journal International, 43(3): 775-794. Spray J G. 1992. A physical basis for the frictional melting of some rock-forming minerals.Tectonophysics, 204(3-4): 205-221. Spray J G. 2005. Evidence for melt lubrication during large earthquakes.Geophysical Research Letter, 32: L07301, doi: 10.1029/2004GL022293. Swanson M T. 1992. Fault structure, wear mechanisms and rupture processes in pseudotachylyte generation.Tectonophysics, 204(3-4): 223-242. Ueda T, Obata M, Di Toro G, et al. 2008. Mantle earthquakes frozen in mylonitized ultramafic pseudotachylytes of spinel-lherzolite facies.Geology, 36(8): 607-610. Vinciguerra S, Bernabé Y. 2009. Rock Physics and Natural Hazards.Berlin: Birkhäuser Basel. Wang H, Li H B, Si J L, et al. 2014. Internal structure of the Wenchuan earthquake fault zone, revealed by surface outcrop and WFSD-1 drilling core investigation. Tectonophysics, 619-620: 101-114. Wang H, Li H B, Janssen C, et al. 2015. Multiple generations of pseudotachylyte in the Wenchuan fault zone and their implications for coseismic weakening.Journal of Structural Geology, 74: 159-171, doi: 10.1016/j.jsg.2015.03.007. Wang H, Li H B, Qiao X F, et al. 2017. Early fault activities of the Longmen Shan orogen constrained by paleoearthquakes: Evidence from the WFSD drilling cores.Acta Petrologica Sinica (in Chinese), 33(12): 3973-3988. Wenk H R. 1978. Are pseudotachylites products of fracture or fusion?Geology, 16(8): 507-511. Wibberley C A J, Shimamoto T. 2005. Earthquake slip weakening and asperities explained by thermal pressurization.Nature, 436(7051): 689-692. Xu X W, Wen X Z, Ye J Q, et al. 2008. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure. Seismology and Geology (in Chinese), 30(3): 597-629. Xu Z Q, Hou L W, Wang Z X, et al. 1992.Orogenic Processes of the Songpan-Ganze Orogenic Belt of China (in Chinese). Beijing: Geological Publishing House. Xu Z Q, Li H Q, Hou L W, et al. 2007. Uplift of the Longmen-Jinping orogenic belt along the eastern margin of the Qinghai-Tibet Plateau: Large-scale detachment faulting and extrusion mechanism.Geological Bulletin of China (in Chinese), 26(10): 1262-1276. Xu Z Q, Li H B, Wu Z L. 2008. Wenchuan earthquake and scientific drilling.Acta Geologica Sinica (in Chinese), 82(12): 1613-1622. Xue L, Li H B, Brodsky E E, et al. 2013. Continuous permeability measurements record healing inside theWenchuan earthquake fault zone. Science, 340(6140): 1555-1559. Yang Z X, Chen Y T, Su J R, et al. 2012. The hypocenter and origin time of the MW7.9 Wenchuan earthquake of May 12, 2008. Acta Seismologica Sinica, 34(2): 127-136. Zhang L, Sun Z M, Li H B, et al. 2017. Rock record and magnetic response to large earthquakes within Wenchuan Earthquake Fault Scientific Drilling cores. Geochemistry, Geophysics, Geosystems, 18(5): 1889-1906, doi: 10.1002/2017GC006822 Zhang P Z, Xu X W, Wen X Z, et al. 2008. Slip rates and recurrence intervals of the Longmen Shan active faultzone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China. Chinese Journal Geophysics (in Chinese), 51(4): 1066-1073. Zhang W, Li H B, Huang Y, et al. 2012. Lithologic characteristics and fault zone structure revealed by No.2 hole cores of the Wenchuan Earthquake Fault Zone Scientific Drilling (WFSD-2).Geological Bulletin of China (in Chinese), 31(8): 1201-1218. Zheng Y, Li H B, Wang H, et al. 2017. Early tectonic activity and its implications for the orogenesis in the Longmen Shan orogenic belt.Acta Petrologica Sinica (in Chinese), 33(12): 3957-3972. 附中文参考文献 邓起东, 陈社发, 赵小麟. 1994. 龙门山及其邻区的构造和地震活动及动力学. 地震地质, 16(4): 389-403. 李海兵, 司家亮, 潘家伟等. 2008a. 活动断裂的变形特征及其大地震复发周期的估算. 地质通报, 27(12): 1968-1991. 李海兵, 付小方, van der Woerd J等. 2008b. 汶川地震(MS8.0)地表破裂及其同震右旋斜向逆冲作用. 地质学报, 82(12): 1623-1643. 李勇, 周荣军, Densmore A L等. 2006. 青藏高原东缘龙门山晚新生代走滑挤压作用的沉积响应. 沉积学报, 24(2):153-164. 刘静, 张智慧, 文力等. 2008. 汶川8级大地震同震破裂的特殊性及构造意义——多条平行断裂同时活动的反序型逆冲地震事件. 地质学报, 82(12): 1707-1722. 王焕, 李海兵, 乔秀夫等. 2017. 龙门山造山带早期断裂活动的古地震制约——来自汶川科钻(WFSD)岩心的证据. 岩石学报, 33(12): 3973-3988. 徐锡伟, 闻学泽, 叶建青等. 2008. 汶川MS8.0地震地表破裂带及其发震构造. 地震地质, 30(3): 597-629. 许志琴, 侯立伟, 王宗秀等. 1992. 中国松潘—甘孜造山带的造山过程. 北京: 地质出版社. 许志琴, 李化启, 侯立玮等. 2007. 青藏高原东缘龙门山—锦屏造山带 的崛起——大型拆离断层和挤出机制. 地质通报, 26(10): 1262-1276. 许志琴, 李海兵, 吴忠良. 2008. 汶川地震和科学钻探. 地质学报, 82(12): 1613-1622. 张培震, 徐锡伟, 闻学泽等. 2008. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因. 地球物理学报, 51(4): 1066-1073. 张伟, 李海兵, 黄尧等. 2012. 四川汶川地震断裂带科学钻探2号孔(WFSD-2)岩性特征和断裂带的结构. 地质通报, 31(8): 1201-1218. 郑勇, 李海兵, 王焕等. 2017. 龙门山造山带的早期活动及其对造山作用的启示. 岩石学报, 33(12): 3957-3972.