REN ZhengYong,
QIU LeWen,
TANG JingTian et al
.2018.3D modeling of direct-current anisotropic resistivity using the adaptive finite-element method based on continuity of current density.Chinese Journal Of Geophysics,61(1): 331-343,doi: 10.6038/cjg2018K0698
1. School of Geosciences and Info-physics of Central South University, Changsha 410083, China; 2. The Key Laboratory of Metallogenic Prediction of Nonferrous Metals of Ministry of Education, Central South University, Changsha 410083, China; 3. The Key Laboratory of Non-ferrous Resources and Geological Hazard Detection, Changsha 410083, China
Abstract:The direct current (DC) resistivity method has been widely applied in engineering, environmental, and hydrological geophysics as well as field mining, geothermal exploration and so forth. Because of existence of bedding surfaces or fissures with directional dependence, underground rocks often exhibit resistivity anisotropy. Therefore it provides an urgent impetus to develop a high-accuracy algorithm to deal with such a complex problem. This work has conducted a high-precision forward modeling for the complex DC anisotropic resistivity problem with arbitrary topography by combining the goal-oriented adaptive finite-element method with an unstructured grid. Different from previous work, we applied an extraordinary secondary virtual potential strategy to simulate the DC problem with arbitrary topography and sources. Furthermore, we built an a-posteriori error estimating algorithm based on the continuity of the normal component of current density adjusting to the DC anisotropic resistivity problem to effectively drive the goal-oriented adaptive grid refinement. Finally, three synthetic anisotropic resistivity models were designed to verify the accuracy and effectiveness of the developed algorithm. The results show that this new algorithm has high accuracy and robust effectiveness. In addition, we found the continuity condition of normal component of electric current density can be adopted to design effective a-posteriori error estimating algorithms for the DC resistivity problem.
Ainsworth M, Oden J T. 1993. A unified approach to a posteriori error estimation using element residual methods. Numerische Mathematik, 65(1):23-50. Ainsworth M, Oden J T. 1997. A posteriori error estimation in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 142(1-2):1-88. Asten M W. 1974. The influence of electrical anisotropy on mise a la masse surveys. Geophysical Prospecting, 22(2):238-245. Attias E, Weitemeyer K, Minshull T A, et al. 2016. Controlled-source electromagnetic and seismic delineation of subseafloor fluid flow structures in a gas hydrate province, offshore Norway. Geophysical Journal International, 206(2):1093-1110. Babuška I, Rheinboldt W C. 1979. Adaptive approaches and reliability estimations in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 17-18:519-540. Bibby H M. 1978. Direct current resistivity modeling for axially symmetric bodies using the finite element method. Geophysics, 43(3):550-562. Bibby H M. 1986. Analysis of multiple-source bipole-quadripole resistivity surveys using the apparent resistivity tensor. Geophysics, 51(4):972-983. Bibby H M, Hohmann G W. 1993. Three-dimensional interpretation of multiple-source bipole-dipole resistivity data using the apparent resistivity tensor. Geophysical prospecting, 41(6):697-723. Blome M, Maurer H R, Schmidt K. 2009. Advances in three-dimensional geoelectric forward solver techniques. Geophysical Journal International, 176(3):740-752. Brenner S, Scott R. 2007. The Mathematical Theory of Finite Element Methods. Dordrecht:Springer. Chou T K, Chouteau M, Dubé J S. 2016. Intelligent meshing technique for 2D resistivity inverse problems. Geophysics, 81(4):IM45-IM56. Dai R H, Zhang F C, Liu H Q. 2016. Seismic inversion based on proximal objective function optimization algorithm. Geophysics, 81(5):R237-R246. Dey A, Morrison H F. 1979. Resistivity modeling for arbitrarily shaped three-dimensional structures. Geophysics, 44(4):753-780. Franke A, Börner R U, Spitzer K. 2007. Adaptive unstructured grid finite element simulation of two-dimensional magnetotelluric fields for arbitrary surface and seafloor topography. Geophysical Journal International, 171(1):71-86. Greenhalgh M S. 2009. DC resistivity modelling and sensitivity analysis in anisotropic media[Ph. D. thesis]. Adelaide:The University of Adelaide. Greenhalgh S, Zhou B, Greenhalgh M, et al. 2009. Explicit expression s for the Fréchet derivatives in 3D anisotropic resistivity inversion. Geophysics, 74(3):F31-F43. Habberjam G M. 1975. Apparent resistivity, anisotropy and strike measurements. Geophysical Prospecting, 23(2):211-247. Hou J S, Mallan R K, Torres-Verdín C. 2006. Finite-difference simulation of borehole EM measurements in 3D anisotropic media using coupled scalar-vector potentials. Geophysics, 71(5):G225-G233. Hu Q E, Chen X Z, Zhou K D. 1997. A new posterior error estimate and adaptivity approach for electromagnetic field finite element computations. Proceedings of the CSEE, 17(2):78-83. Jin J M. 2014. The Finite Element Method in Electromagnetics. New York:John Wiley & Sons. Key K, Weiss C. 2006. Adaptive finite-element modeling using unstructured grids:The 2D magnetotelluric example. Geophysics, 71(6):G291-G299. Li J M. 2005. Geoelectric Field and Electrical Exploration. Beijing:Geological Publishing House. Li P, Uren N F. 1997. Analytical solution for the point source potential in an anisotropic 3-D half-space I:two-horizontal-layer case. Mathematical and Computer Modelling, 26(5):9-27. Li P, Uren N F. 1999. The modelling of direct current electric potential in an arbitrarily anisotropic half-space containing a conductive 3-D body. Journal of Applied Geophysics, 38(1):57-76. Li P, Stagnitti F. 2004. Direct current electric potential in an anisotropic half-space with vertical contact containing a conductive 3D body. Mathematical Problems in Engineering, 2004:63-77. Li Y G, Spitzer K. 2002. Three-dimensional DC resistivity forward modelling using finite elements in comparison with finite-difference solutions. Geophysical Journal International, 151(3):924-934. Li Y G, Spitzer K. 2005. Finite element resistivity modelling for three-dimensional structures with arbitrary anisotropy. Physics of the Earth and Planetary Interiors, 150(1-3):15-27. Li Y G, Key K. 2007. 2D marine controlled-source electromagnetic modeling:Part 1-An adaptive finite-element algorithm. Geophysics, 72(2):WA51-WA62. Li Y G, Pek J. 2008. Adaptive finite element modelling of two-dimensional magnetotelluric fields in general anisotropic media. Geophysical Journal International, 175(3):942-954. Linde N, Pedersen L B. 2004. Evidence of electrical anisotropy in limestone formations using the RMT technique. Geophysics, 69(4):909-916. Lowry T, Allen M, Shive P N. 1989. Singularity removal:A refinement of resistivity modeling techniques. Geophysics, 54(6):766-774. Maillet R. 1947. The fundamental equations of electrical prospecting. Geophysics, 12(4):529-556. Oden J T, Prudhomme S. 2001. Goal-oriented error estimation and adaptivity for the finite element method. Computers & Mathematics with Applications, 41(5-6):735-756. Pain C C, Herwanger J V, Saunders J H, et al. 2003. Anisotropic resistivity inversion. Inverse Problems, 19(5):1081-1111. Penz S, Chauris H, Donno D, et al. 2013. Resistivity modelling with topography. Geophysical Journal International, 194(3):1486-1497. Rücker C, Günther T, Spitzer K. 2006. Three-dimensional modelling and inversion of dc resistivity data incorporating topography-I. Modelling. Geophysical Journal International, 166(2):495-505. Ren Z Y, Tang J T. 2009. Finite element modeling of 3-D DC resistivity using locally refined unstructured meshes. Chinese Journal of Geophysics (in Chinese), 52(10):2627-2634. Ren Z Y, Tang J T. 2010. 3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method. Geophysics, 75(1):H7-H17. Ren Z Y, Kalscheuer T, Greenhalgh S, et al. 2013. A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modelling. Geophysical Journal International, 194(2):700-718. Ren Z Y, Kalscheuer T, Greenhalgh S, et al. 2014. A hybrid boundary element-finite element approach to modeling plane wave 3D electromagnetic induction responses in the Earth. Journal of Computational Physics, 258:705-717. Ren Z Y, Tang J T. 2014. A goal-oriented adaptive finite-element approach for multi-electrode resistivity system. Geophysical Journal International, 199(1):136-145. Ren Z Y, Chen C J, Tang J T, et al. 2017d. A new integral equation approach for 3D magnetotelluric modeling. Chinese Journal of Geophysics (in Chinese), 60(11):4506-4515, doi:10.6038/cjg20171134. Ren Z Y, Qiu L W, Tang J T, et al. 2018a. 3-D direct current resistivity anisotropic modelling by goal-oriented adaptive finite element methods. Geophysical Journal International, 212(1):76-87. Ren Z Y, Chen C J, Pan K J, et al. 2017a. Gravity Anomalies of Arbitrary 3D Polyhedral Bodies with Horizontal and Vertical Mass Contrasts. Surveys in Geophysics, 38(2):479-502. Ren Z Y, Tang J T, Kalscheuer T, et al. 2017b. Fast 3D large-scale gravity and magnetic modeling using unstructured grids and an adaptive multi-level fast multipole method. Journal of Geophysical Research:Solid Earth, 122(1):79-109. Ren Z Y, Chen C J, Tang J T, et al. 2017c. Closed-form formula for full magnetic gradient tensor of a homogeneous polyhedral body:a tetrahedral grid example. Geophysics, 82(6):WB21-WB28. Ren Z Y, Zhong Y Y, Chen C J, et al. 2018b. Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts up to cubic order. Geophysics, 83(1):G1-G13. Schenk O, Gärtner K. 2004. Solving unsymmetric sparse systems of linear equations with PARDISO. Future Generation Computer Systems, 20(3):475-487. Si H. 2015. TetGen, a delaunay-based quality tetrahedral mesh generator. Acm Transactions on Mathematical Software, 41(2):1-36. Stratton J A. 2007. Electromagnetic Theory. New York:John Wiley & Sons. Wait J R. 1990. Current flow into a three-dimensionally anisotropic conductor. Radio Science, 25(5):689-694. Wang F Y. 2009. 2.5D DC resistivity modeling by the adaptive finite-element method with unstructured triangulation[Master's thesis] (in Chinese). Changsha:Central South University. Wang J H, Yang L, Shen W P. 2000. Advances of posteriori error estimation for FEM. Advances in Mechanics (in Chinese), 30(2):175-190. Wang T, Fang S. 2001. 3-D electromagnetic anisotropy modeling using finite differences. Geophysics, 66(5):1386-1398. Wang W, Wu X P, Spitzer K. 2013. Three-dimensional DC anisotropic resistivity modelling using finite elements on unstructured grids. Geophysical Journal International, 193(2):734-746. Xu S Z, Liu B, Ruan B Y. 1994. The finite element method for solving anomalous potential for resistivity surveys. Chinese Journal of Geophysics (in Chinese), 37(2):511-515. Yan B. 2013. 2.5D DC resistivity numerical modeling by adaptive finite-element method[Master's thesis] (in Chinese). Qingdao:Chinese Marine University. Yin C C, Weidelt P. 1999. Geoelectrical fields in a layered earth with arbitrary anisotropy. Geophysics, 64(2):426-434. Yin C C. 2000. Geoelectrical inversion for a one-dimensional anisotropic model and inherent non-uniqueness. Geophysical Journal International, 140(1):11-23. Yin C C, Maurer H M. 2001. Electromagnetic induction in a layered earth with arbitrary anisotropy. Geophysics, 66(5):1405-1416. Yin C C, Zhang B, Liu Y H, et al. 2016. A goal-oriented adaptive finite-element method for 3D scattered airborne electromagnetic method modeling. Geophysics, 81(5):E337-E346. Zhou B, Greenhalgh M, Greenhalgh S A. 2009. 2.5-D/3-D resistivity modelling in anisotropic media using Gaussian quadrature grids. Geophysical Journal International, 176(1):63-80. Zhu J, Taylor Z, Zienkiewicz O. 2005. The Finite Element Method:Its Basis and Fundamentals. Burlington, VT:Butterworth-Heinemann. Zienkiewicz O C, Taylor R L. 2000. The Finite Element Method:Solid Mechanics. Oxford:Butterworth-Heinemann. Zienkiewicz O C. 2006. The background of error estimation and adaptivity in finite element computations. Computer Methods in Applied Mechanics and Engineering, 195(4-6):207-213. 胡恩球, 陈贤珍, 周克定. 1997. 电磁场有限元计算后验误差估计与自适应新方法. 中国电机工程学报, 17(2):78-83. 李金铭. 2005. 地电场与电法勘探. 北京:地质出版社. 任政勇, 汤井田. 2009. 基于局部加密非结构化网格的三维电阻率法有限元数值模拟. 地球物理学报, 52(10):2627-2634. 任政勇, 陈超健, 汤井田, 等. 2017d. 一种新的三维大地电磁积分方程正演方法. 地球物理学报, 60(11):4506-4515, doi:10.6038/cjg20171134. 王飞燕. 2009. 基于非结构化网格的2.5-D直流电阻率法自适应有限元数值模拟[硕士论文]. 长沙:中南大学. 王建华, 杨磊, 沈为平. 2000. 有限元后验误差估计方法的研究进展. 力学进展, 30(2):175-190. 徐世浙, 刘斌, 阮百尧. 1994. 电阻率法中求解异常电位的有限单元法. 地球物理学报, 37(2):511-515. 严波. 2013. 2.5维直流电阻率自适应有限元数值模拟[硕士论文]. 青岛:中国海洋大学.