PAN XinPeng,
ZHANG GuangZhi,
YIN XingYao
.2018.Seismic scattering inversion for anisotropy in heterogeneous orthorhombic media.Chinese Journal Of Geophysics,61(1): 267-283,doi: 10.6038/cjg2018K0609
Seismic scattering inversion for anisotropy in heterogeneous orthorhombic media
PAN XinPeng1, ZHANG GuangZhi1,2, YIN XingYao1,2
1. China University of Petroleum(Huadong), School of Geosciences, Qingdao 266580, China; 2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
Abstract:A single set of vertically aligned fractures embedded in a horizontal fine layer can be considered to be a long-wavelength effective orthorhombic anisotropic medium. The estimation of anisotropic parameters and fracture weaknesses is of great importance to characterize the anisotropy of heterogeneous anisotropic media. The elastic inverse scattering theory is one of the effective tools to realize the inversion for the elastic and anisotropic parameters of such media. Based on this theory, we first derive a linearized PP-wave reflection coefficient in terms of Thomsen anisotropic parameters and fracture weaknesses in heterogeneous orthorhombic media. A novel parameterization method of azimuthally anisotropic elastic impedance is then proposed using the variant formulations of anisotropic parameters. To improve the inversion stability and the lateral continuity, we develop an anisotropic elastic impedance inversion with angles of incidence and azimuth inversion method in the Bayesian framework using the regularization of the Cauchy-sparse constraint, smoothing model constraint and the nonlinear iteratively reweighted least squares (IRLS) strategy to estimate the anisotropic parameters and fracture weaknesses. Tests on synthetic and real data show that the results agree well with well log interpretation, and validate that this method can estimate the anisotropic parameters stably and reliably, providing a robust tool for inversion of heterogeneous orthorhombic media.
Alemie W, Sacchi M D. 2011. High-resolution three-term AVO inversion by means of a Trivariate Cauchy probability distribution. Geophysics, 76(3):R43-R55. Bachrach R. 2015. Uncertainty and nonuniqueness in linearized AVAZ for orthorhombic media. The Leading Edge, 34(9):1048-1056. Backus G E. 1962. Long-wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research, 67(11):4427-4440. Bakulin A, Grechka V, Tsvankin I. 2000. Estimation of fracture parameters from reflection seismic data-Part Ⅱ:Fractured models with orthorhombic symmetry. Geophysics, 65(6):1803-1817. Bakulin A, Grechka V, Tsvankin I. 2002. Seismic inversion for the parameters of two orthogonal fracture sets in a VTI background medium. Geophysics, 67(1):292-299. Brown R S, Korringa J. 1975. On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics, 40(4):608-616. Buland A, Omre H. 2003. Bayesian linearized AVO inversion. Geophysics, 68(1):185-198. Burridge R, De Hoop M V, Miller D, et al. 1998. Multiparameter inversion in anisotropic elastic media. Geophysical Journal International, 134(3):757-777. ervený V, Pšenik I. 2001. Seismic Ray Theory. Cambridge:Cambridge University Press. Chen H Z, Yin X Y, Gao C G, et al. 2014a. AVAZ inversion for fluid factor based on fracture anisotropic rock physics theory. Chinese Journal of Geophysics (in Chinese), 57(3):968-978, doi:10.6038/cjg20140326. Chen H Z, Yin X Y, Zhang J Q, et al. 2014b. Seismic inversion for fracture rock physics parameters using azimuthally anisotropic elastic impedance. Chinese Journal of Geophysics (in Chinese), 57(10):3431-3441, doi:10.6038/cjg20141029. Chen T S, Wei X C, Liu Y. 2006. New approximation formula for calculation of elastic impedance in anisotropic media. Geophysical Prospecting for Petroleum (in Chinese), 45(6):563-569. Connolly P. 1999. Elastic impedance. The Leading Edge, 18(4):438-452. Cui J, Han L G, Liu Q K, et al. 2010. P-SV wave elastic impedance and fluid identification factor in weakly anisotropic media. Applied Geophysics, 7(2):135-142. Downton J. 2005. Seismic parameter estimation from AVO inversion[Ph. D. thesis]. Calgary:University of Calgary, Eaton D W S, Stewart R. 1994. Migration/inversion for transversely isotropic elastic media. Geophysical Journal International, 119(2):667-683. Far M E, Sayers C M, Thomsen L, et al. 2013. Seismic characterization of naturally fractured reservoirs using amplitude versus offset and azimuth analysis. Geophysical Prospecting, 61(2),427-447. Hood J A. 1991. A simple method for decomposing fracture-induced anisotropy. Geophysics, 56(8):1275-1279. Hornby B E, Schwartz L M, Hudson J A. 1994. Anisotropic effective medium modeling of the elastic properties of shales. Geophysics, 59(10):1570-1583. Hsu C J, Schoenberg M. 1993. Elastic waves through a simulated fractured medium. Geophysics, 58(7):964-977. Hudson J A. 1980. Overall properties of a cracked solid. Mathematical Proceedings of the Cambridge Philosophical Society, 88(2):371-384. Hudson J A. 1981. Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal International, 64(1):133-150. Liu E R, Martinez A. 2012. Seismic Fracture Characterization. Netherlands:EAGE Publication. Ma J F. 2003. Forward modeling and inversion method of generalized elastic impedance in seismic exploration. Chinese Journal of Geophysics (in Chinese), 46(1):118-124. Martins J L. 2006. Elastic impedance in weakly anisotropic media. Geophysics, 71(3):D73-D83. Mavko G, Mukerji T, Dvorkin J. 2009. The Rock Physics Handbook:Tools for Seismic Analysis of Porous Media. 2nd ed. New York:Cambridge University Press, Mora P. 1987. Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics, 52(9):1211-1228. Pšenik I, Martins J L. 2001. Properties of weak contrast PP reflection/transmission coefficients for weakly anisotropic elastic media. Studia Geophysica et Geodaetica, 45(2):176-199. Rüger A. 1996. Reflection coefficients and azimuthal AVO analysis in anisotropic media[Ph. D. thesis]. Colorado:Colorado School of Mines. Scales J A, Smith M L. 1994. Introductory Geophysical Inverse Theory. Golden Colorado:Samizdat Press. Schoenberg M. 1980. Elastic wave behavior across linear slip interfaces. Journal of the Acoustical Society of America, 68(5):1516-1521. Schoenberg M. 1983. Reflection of elastic waves from periodically stratified media with interfacial slip. Geophysical Prospecting, 31(2):265-292. Schoenberg M, Douma J. 1988. Elastic wave propagation in media with parallel fractures and aligned cracks. Geophysical Prospecting, 36(6):571-590. Schoenberg M, Helbig K. 1997. Orthorhombic media:Modeling elastic wave behavior in a vertically fractured earth. Geophysics, 62(6):1954-1957. Shaw R K, Sen M K. 2004. Born integral, stationary phase and linearized reflection coefficients in weak anisotropic media. Geophysical Journal International, 158(1):225-238. Shaw R K, Sen M K. 2006. Use of AVOA data to estimate fluid indicator in a vertically fractured medium. Geophysics, 71(3):C15-C24. Stolt R H, Weglein A B. 1985. Migration and inversion of seismic data. Geophysics, 50(12):2458-2472. Thomsen L. 1986. Weak elastic anisotropy. Geophysics, 51(10):1954-1966. Thomsen L. 2002. Understanding seismic anisotropy in exploration and exploitation.//72th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts. Tsvankin L. 1997. Anisotropic parameters and P-wave velocity for orthorhombic media. Geophysics, 62(4):1292-1309. Weglein A B. 1993. Nonlinear inverse scattering for multiple attenuation.//SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation. San Diego,158-160. Whitcombe D N. 2002. Elastic impedance normalization. Geophysics, 67(1):60-62. Wu R S, Aki K. 1985. Scattering characteristics of elastic waves by an elastic heterogeneity. Geophysics, 50(4):582-595. Xu S Y, Payne M A. 2009. Modeling elastic properties in carbonate rocks. The Leading Edge, 28(1):66-74. Yin X Y, Zhang S X, Zhang F. 2013a. Two-term elastic impedance inversion and Russell fluid factor direct estimation method for deep reservoir fluid identification. Chinese Journal of Geophysics (in Chinese), 56(7):2378-2390, doi:10.6038/cjg20130724. Yin X Y, Zong Z Y, Wu G C. 2013b. Seismic wave scattering inversion for fluid factor of heterogeneous media. Science China:Earth Sciences, 57(3):542-549. Zhang F, Li X Y. 2015. Exact elastic impedance tensor for isotropic media. Science China Earth Sciences, 58(8):1350-1360. Zhang G Z, Chen H Z, Wang Q, et al. 2013. Estimation of S-wave velocity and anisotropic parameters using fractured carbonate rock physics model. Chinese Journal of Geophysics (in Chinese), 56(5):1707-1715, doi:10.6038/cjg20130528. Zhang G Z, Chen J J, Chen H Z, et al. 2015. Prediction for in-situ formation stress of shale based on rock physics equivalent model. Chinese Journal of Geophysics (in Chinese), 58(6):2112-2122, doi:10.6038/cjg20150625. Zong Z Y, Yin X Y, Wu G C. 2012a. Fluid identification method based on compressional and shear modulus direct inversion. Chinese Journal of Geophysics (in Chinese), 55(1):284-292, doi:10.6038/j.issn.0001-5733.2012.01.028. Zong Z Y, Yin X Y, Zhang F, et al. 2012b. Reflection coefficient equation and pre-stack seismic inversion with Young's modulus and Poisson ratio. Chinese Journal of Geophysics (in Chinese), 55(11):3786-3794, doi:10.6038/j.issn.0001-5733.2012.11.025. 陈怀震, 印兴耀, 高成国等. 2014a. 基于各向异性岩石物理的缝隙 流体因子AVAZ反演. 地球物理学报, 57(3):968-978, doi:10.6038/cjg20140326. 陈怀震, 印兴耀, 张金强等. 2014b. 基于方位各向异性弹性阻抗的裂缝岩石物理参数反演方法研究. 地球物理学报, 57(10):3431-3441, doi:10.6038/cjg20141029. 陈天胜, 魏修成, 刘洋. 2006. 一种新的各向异性弹性阻抗近似公式. 石油物探, 45(6):563-569. 马劲风. 2003. 地震勘探中广义弹性阻抗的正反演. 地球物理学报, 46(1):118-124. 印兴耀, 张世鑫, 张峰. 2013a. 针对深层流体识别的两项弹性阻抗反演与Russell流体因子直接估算方法研究. 地球物理学报, 56(7):2378-2390, doi:10.6038/cjg20130724. 印兴耀, 宗兆云, 吴国忱. 2013b. 非均匀介质孔隙流体参数地震散射波反演. 中国科学:地球科学, 43(12):1934-1942. 张峰, 李向阳. 2015. 各向同性介质弹性阻抗的张量表示. 中国科学:地球科学,, 45(6):799-810. 张广智, 陈怀震, 王琪等. 2013. 基于碳酸盐岩裂缝岩石物理模型的横波速度和各向异性参数预测. 地球物理学报, 56(5):1707-1715, doi:10.6038/cjg20130528. 张广智, 陈娇娇, 陈怀震等. 2015. 基于页岩岩石物理等效模型的地应力预测方法研究. 地球物理学报, 58(6):2112-2122, doi:10.6038/cjg20150625. 宗兆云, 印兴耀, 吴国忱. 2012a. 基于叠前地震纵横波模量直接反演的流体检测方法. 地球物理学报, 55(1):284-292, doi:10.6038/j.issn.0001-5733.2012.01.028. 宗兆云, 印兴耀, 张峰等. 2012b. 杨氏模量和泊松比反射系数近似方程及叠前地震反演. 地球物理学报, 55(11):3786-3794, doi:10.6038/j.issn.0001-5733.2012.11.025.