DENG Bin,
YONG Zi-Quan,
LIU Shu-Gen et al
.2016.Cenozoic mountain-building processes in the Daliangshan, southeastern margin of the Tibetan Plateau: Evidence from low-temperature thermochronology and thermal modeling.Chinese Journal Of Geophysics,59(6): 2162-2175,doi: 10.6038/cjg20160621
Cenozoic mountain-building processes in the Daliangshan, southeastern margin of the Tibetan Plateau: Evidence from low-temperature thermochronology and thermal modeling
DENG Bin1,2, YONG Zi-Quan1, LIU Shu-Gen1, LI Zhi-Wu1, ZHAO Gao-Ping1, MISE Zi-Ha3, TANG Cong4
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China; 2. Institute für Geowissenschaften, Universität Tübingen, Tübingen 72074, Germany; 3. Bureau of Geology and Mineral Resources of Sichuan Province, Panxi Team, Sichuan Xicang 615000, China; 4. Research Institute of Petroleum Exploration and Development, Liaohe Oilfield, Liaoning Panjing 124010, China
Abstract:The Daliangshan Mountains, located in the southeastern margin of the Tibetan Plateau, is characterized of long-wavelength, low-relief topography, of which the uplift and exhumation have been well documented with controversies concerning eastward growth of the Tibetan Plateau. Based on nine samples of multisystem low-temperature thermochronology (i.e., apatite and zircon (U-Th)/He (AHe and ZHe), apatite fission track (AFT)), this study suggests a positive relationship between decreasing thermochronological ages and increasing paleo-depth in the Xide and Muchuan stratigraphic columns. The AHe, AFT and ZHe ages in the Xide section are 7-9 Ma, 14-22 Ma and 25-38 Ma, respectively. The AHe and AFT ages in the Muchuan section are 10-26 Ma and 23-85 Ma, while the ZHe ages are partially retentive. Furthermore, the thermal histories modeled by the QTQt and low-temperature thermochronology imply three episodes of uplift and exhumation that occurred across the Daliangshan, in particular, a last period of enhanced cooling and exhumation beginning from 30-20 Ma. Of them, the exhumation rates in the Xide and Muchuan sections are ~0.15 mm·a-1 and ~0.20 mm·a-1, with magnitude of ~3.0 km and ~1.5 km, respectively. Thus, we argued that the mount-building processes and their uplift dynamics in the Daliangshan should be attributed to the crustal-shortening-related exhumation rather than the flow of the lower crust.
An Y F, Han Z J, Wan J L. 2008. Fission track dating of the Cenozoic uplift in Mabian area, southern Sichuan Province, China. Science in China Series D: Earth Sciences, 51(9): 1238-1247. Braun J. 2002. Quantifying the effect of recent relief changes on age-elevation relationships. Earth and Planetary Science Letters, 200(3-4): 331-343. Chen C Y, He H L. 2008. Crust shortening of Daliangshan tectonic zone in Cenozoic era and its implication. Seismology and Geology (in Chinese), 30(2): 443-453. Clark M K, House M A, Royden L H, et al. 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33(6): 525-528. Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706. Deng B, Liu S G, Li Z W, et al. 2013. Differential exhumation at eastern margin of the Tibetan Plateau, from apatite fission-track thermochronology. Tectonophysics, 591: 98-115. Deng B, Liu S G, Wang G Z, et al. 2013. Cenozoic uplift and exhumation in southern Sichuan basin-Evidence from low-temperature thermochronology. Chinese J. Geophys. (in Chinese), 56(6): 1958-1973, doi: 10.6038/cjg20130618. Deng B, Liu S G, Enkelmann E, et al. 2015. Late Miocene accelerated exhumation of the Daliang Mountains, southeastern margin of the Tibetan Plateau. International Journal of Earth Sciences, 104(4): 1061-1081. Deng B, Sueoka S, Liu S G, et al. 2014. Wedge-thrust folding in the Micangshan constrained by low-temperature thermochronometer model and its significance. Chinese J. Geophys. (in Chinese), 57(4): 1155-1168, doi: 10.6038/cjg20140413. Ehlers T A, Farley K A. 2003. Apatite (U-Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters, 206(1-2): 1-14. England P, Molnar P. 1990a. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet. Nature, 344(6262): 140-142. England P, Molnar P. 1990b. Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 18(12): 1173-1177. Farley K A. 2000. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. Journal of Geophysical Research, 105(B2): 2903-2914, doi:10.1029/1999JB900348. Gallagher K, Brown R, Johnson C. 1998. Fission track analysis and its applications to geological problems. Annu. Rev. Earth Planet. Sci., 26: 519-572. Gallagher K. 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research, 117: B02408, doi: 10.1029/2011JB008825. Godard V, Pik R, Lavé J, et al. 2009. Late Cenozoic evolution of the central Longmen Shan, eastern Tibet: Insight from (U-Th)/He thermochronometry. Tectonics, 28(5), doi: 10.1029/2008TC002407. Hu S B, He L J, Wang J Y. 2000. Heat flow in the continental area of China: a new data set. Earth and Planetary Science Letters, 179(2): 407-419. Ketcham R A. 2005. HeFTy Beta version 4. The University of Texas at Austin, Texas. Kirby E, Reiners P W, Krol M A, et al. 2002. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-Th)/He thermochronology. Tectonics, 21(1), doi: 10.1029/2000TC001246. Liao Z L, Deng Y F, Liao G Y. 2003. Formation and evolution of Mesozoic thrust fold belt in Jinping area, Sichuan. Geotectonica et Metallogenia (in Chinese), 27(2): 152-159. Liu S G, Ma Y S, Sun W, et al. 2008. Studying on the differences of Sinian natural gas pools between Weiyuan gas field and Ziyang gas-brone area, Sichuan basin. Acta Geologica Sinica (in Chinese), 82(3): 329-337. Liu S G, Deng B, Li Z W, et al. 2012. Architecture of basin-mountain systems and their influences on gas distribution: a case study from the Sichuan Basin, South China. Journal of Asian Earth Sciences, 47: 204-215. Li Z W, Liu S G, Chen H D, et al. 2012. Spatial variation in Meso-Cenozoic exhumation history of the Longmen Shan thrust belt (eastern Tibetan Plateau) and the adjacent western Sichuan basin: Constraints from fission track thermochronology. Journal of Asian Earth Sciences, 47: 185-203. Lisker F, Ventura B, Glasmacher U A. 2009. Apatite thermochronology in modern geology.//Thermochronological Methods: From Palaeotemperature Constraints to Landscape Evolution Models. Geological Society, London, Special Publications, 324(1): 1-23. Mancketlow N S, Grasemann B. 1997. Time-dependent effects of heat advection and topography on cooling histories during erosion. Tectonophysics, 270(3-4): 167-195. Metcalf J R, Fitzgerald P G, Baldwin S L, et al. 2009. Thermochronology of a convergent orogen: Constraints on the timing of thrust faulting and subsequent exhumation of the Maladeta Pluton in the Central Pyrenean Axial Zone. Earth and Planetary Science Letters, 287(3-4): 488-503. Oskin M E. 2012. Reanimating eastern Tibet. Nature Geoscience, 5(9): 597-598. Ouimet W, Whipple K, Royden L H, et al. 2010. Regional incision of the eastern margin of the Tibetan Plateau. Lithosphere, 2(1): 50-63. Qiu N S, Mei Q H, Reiners P, et al. 2009. Application of the (U-Th)/He thermochronometry to the tectono-thermal evolution of sedimentary basin-A case history of Well KQ1 in the Tarim Basin. Chinese J. Geophys. (in Chinese), 52(7): 1825-1835, doi: 10.3969/j.issn.0001-5733.2009.07.017. Reiners P W, Zhou Z Y, Ehlers T A, et al. 2003. Post-orogenic evolution of the Dabie Shan, Eastern China, from (U-Th)/He and fission-track thermochronology. American Journal of Science, 303(6): 489-518. Reiners P W, Spell T L, Nicolescu S, et al. 2004. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochimica et Cosmochimica Acta, 68(8): 1857-1887. Reiners P W, Brandon M T. 2006. Using thermochronology to understand orogenic erosion. Annu. Rev. Earth Planet. Sci., 34: 419-466. Richardson N J, Densmore A L, Seward D, et al. 2008. Extraordinary denudation in the Sichuan Basin: Insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau. Journal of Geophysical Research, 113, doi: 10.1029/2006JB004739. Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321(5892): 1054-1058. Sandiford M, Powell R. 1990. Some isostatic and thermal consequences of the vertical strain geometry in convergent orogens. Earth and Planetary Science Letters, 98(2): 154-165. Stüwe K. 2007. Geodynamics of the Lithosphere: An Introduction. Berlin: Springer. Stüwe K, Barr T D. 1998. On uplift and exhumation during convergence. Tectonics, 17(1): 80-88. Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671-1677. Tian Y T, Kohn B P, Hu S B, et al. 2014. Postorogenic rigid behavior of the eastern Songpan-Ganze terrane: Insights from low-temperature thermochronology and implications for intracontinental deformation in central Asia. Geochemistry, Geophysics, Geosystems, 15(2): 453-474. Wang E, Kirby E, Furlong K P, et al. 2012a. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5(9): 640-645. Wang E Q, Yin J Y. 2009. Cenozoic multi-stage deformation occurred in southwest Sichuan: Cause for the dismemberment of the proto-Sichuan Basin. Journal of Northwest University (Natural Science Edition) (in Chinese), 39(3): 359-367. Wang S F, Jiang G G, Xu T D, et al. 2012b. The Jinhe-Qinghe fault-An inactive branch of the Xianshuihe-Xiaojiang fault zone, Eastern Tibet. Tectonophysics, 544-545: 93-102. Wilson C J L, Fowler A P. 2011. Denudational response to surface uplift in east Tibet: Evidence from apatite fission-track thermochronology. GSA Bulletin, 123(9-10): 1966-1987. Willett S D. 1999. Orogeny and orography: the effects of erosion on the structure of mountain belts. Journal of Geophysical Research, 104(B12): 28957-28981. Willett S D, Brandon M T. 2002. On steady states in mountain belts. Geology,30(2): 175-178. Witze A. 2009. Seismology: The sleeping dragon. Nature, 459(7244): 153-157. Xu G Q, Kamp P J J. 2000. Tectonics and denudation adjacent to the Xianshuihe fault, eastern Tibetan Plateau: Constraints from fission track thermochronology. Journal of Geophysical Research, 105: 19231-19251. Yang Z. 2013. Geochronology constraints on tectonics of the Qin and Daba Mountains. Technische Universität Bergakademie Freiberg. Zhang P Z, Shen Z K, Wang M, et al. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9): 809-812. 附中文参考文献 陈长云, 何宏林. 2008. 大凉山地区新生代地壳缩短及其构造意义. 地震地质, 30(2): 443-453. 邓宾, 刘树根, 王国芝等. 2013. 四川盆地南部地区新生代隆升剥露研究——低温热年代学证据. 地球物理学报, 56(6): 1958-1973, doi: 10.6038/cjg20130618. 邓宾, Suekoka S, 刘树根等. 2014. 米仓山楔入冲断构造模型低温热年代学证据及其意义. 地球物理学报, 57(4): 1155-1168, doi: 10.6038/cjg20140413. 廖忠礼, 邓永福, 廖光宇. 2003. 四川锦屏地区新生代冲断作用. 大地构造与成矿学, 27(2): 152-159. 刘树根, 马永生, 孙玮等. 2008. 四川盆地威远气田和资阳含气区震旦系油气成藏差异性研究. 地质学报, 82(3): 329-337. 邱楠生, 梅庆华, Reiners P等. 2009. (U-Th)/He年龄在沉积盆地构造-热演化研究中的应用——以塔里木盆地KQ1井为例. 地球物理学报, 52(7): 1825-1835, doi: 10.3969/j.issn.0001-5733.2009.07.017. 王二七, 尹纪云. 2009. 川西南新生代构造作用以及四川原型盆地的破坏. 西北大学学报(自然科学版), 39(3): 359-367.